精英家教网 > 高中数学 > 题目详情
函数y=(
1
2
x2-2x+3的单调递增区间为(  )
A、(-1,1)
B、[1,+∞)
C、(-∞,1]
D、(-∞,+∞)
考点:复合函数的单调性
专题:函数的性质及应用
分析:设t=x2-2x+3,根据复合函数单调性之间的关系即可得到结论.
解答: 解:设t=x2-2x+3,则函数y=(
1
2
t为减函数,
根据复合函数单调性之间的关系知要求函数f(x)的单调递增区间,
即求函数t=x2-2x+3的递减区间,
∵t=x2-2x+3,递减区间为(-∞,1],
则函数f(x)的递增区间为(-∞,-1],
故选:C
点评:本题主要考查函数单调区间的求解,利用换元法结合复合函数单调性之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}中,Sn为其前n项和,若
S4
S6
=-
2
3
,则
S5
S8
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点P(-4,-3),则sinα的值为(  )
A、-
3
5
B、-
4
5
C、
3
5
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

2sin(-210°)的值为(  )
A、-
1
2
B、1
C、
1
2
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

①(
4
3
-1+(4 -
3
4
2+(
8
)-
4
3
-16-0.75
②lg25+lg2lg50+
5
×2 
1
2
log25

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z1=1-i,z2=2+i,其中i为虚数单位,则z1•z2的虚部为(  )
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中数学 来源: 题型:

若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合(∁UM)∩N等于(  )
A、{2,3}
B、{2,3,5,6}
C、{1,4}
D、{1,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,曲线Γ由曲线C1
x2
a2
+
y2
b2
=1(a>b>0,y≤0)
和曲线C2
x2
a2
-
y2
b2
=1(y>0)
组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,
(1)若F2(2,0),F3(-6,0),求曲线Γ的方程;
(2)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;
(3)对于(1)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

|z+
1
z
|=1时,则|z|的取值范围是
 

查看答案和解析>>

同步练习册答案