精英家教网 > 高中数学 > 题目详情
已知关于x的函数y=
x2+1+c
x2+c

(1)若c=-1,求该函数的值域.
(2)当c满足什么条件时,该函数的值域为[2,+∞)?说明你的理由.
(3)求证:若c>1,则y
1+c
c
分析:(1)换元法:令t=
x2-1
,则利用基本不等式即可得到值域;
(2)使函数有意义,再利用不等式,
即可得到函数的值域为[2,+∞)时,c需满足的条件;
(3)换元后,做差来比较y与
1+c
c
的大小关系.
解答:解:由于y=
x2+1+c
x2+c
,若令t=
x2+c
,则y=t+
1
t

(1)当c=-1时,t=
x2-1
>0

y=
x2+1-1
x2-1
=t+
1
t
≥2
t•
1
t
=2

当且仅当t=
1
t
x=±
2
时等号成立,
∴该函数的值域为[2,+∞);
(2)当c≤1时,该函数的值域为[2,+∞).理由如下:
y=t+
1
t
(t>0),
∴y≥2
当且仅当t=
1
t
x=±
1-c
时等号成立,
∴该函数的值域为[2,+∞);
(3)证:由于y=t+
1
t
(t≥
c
)

y-
1+c
c
=
t2+1
t
-
1+c
c
=
c
t2+
c
-t-ct
c
•t
(
c
t-1)(t-
c
)
c
•t

t≥
c
,∴t-
c
≥0

又由
c
t≥c>1
,∴
c
t-1>0

y≥
1+c
c
(当且仅当x=0时等号成立)
点评:本题考查了函数值域的求法,换元后利用基本不等式解决简单的求值域问题要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的函数y=
(1-t)x-t2
x
(t∈R)的定义域为D,存在区间[a,b]⊆D,f(x)的值域也是[a,b].当t变化时,b-a的最大值=
2
3
3
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数y=cos2x-4αsinx-3α(α∈R)的最大值M(α)
(1)求M(α)
(2)求M(α)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数y=(3t-2)x是R上的减函数,则实数t的取值范围是
2
3
<t<1
2
3
<t<1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数y=f(x)=a
x
3
 
+b
x
2
 
+cx+d
,x∈R(a,b,c,d为常数且a≠0),f'(x)=0是关于x的一元二次方程,根的判别式为△,给出下列四个结论:
①△<0是y=f(x)在(-∞,+∞)为单调函数的充要条件;
②若x1、x2分别为y=f(x)的极小值点和极大值点,则x2>x1
③当a>0,△=0时,f(x)在(-∞,+∞)上单调递增;
④当c=3,b=0,a∈(0,1)时,y=f(x)在[-1,1]上单调递减.
其中正确结论的序号是
 
.(填写你认为正确的所有结论序号)

查看答案和解析>>

同步练习册答案