【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参考方程为(为参数).
(1)求曲线上的点到直线的距离的最大值与最小值;
(2)过点与直线平行的直线与曲线交于两点,求的值.
【答案】(1)(2) .
【解析】试题分析:(1)点A的极坐标为(4, ),可化为直角坐标A(4,4).直线l的极坐标方程为ρcos(θ﹣)=a,把点A的坐标代入直线方程可得a,再利用点到直线的距离公式与三角函数的单调性值域及其绝对值的性质即可得出.(2)写出直线的参数方程,曲线C1的参数方程为(θ为参数),化为,联立解出,利用t的几何意义得到.
解析:
(1)由直线过点可得,故,
则易得直线的直角坐标方程为.
根据点到直线的距离方程可得曲线上的点到直线的距离,
.
(2)由(1)知直线的倾斜角为,
则直线的参数方程为(为参数).
又易知曲线的普通方程为.
把直线的参数方程代入曲线的普通方程可得,
,依据参数的几何意义可知.
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点到其焦点的距离为4,椭圆 的离心率,且过抛物线的焦点.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线于两不同点,交轴于点,已知, ,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列各项均为正数, , ,且对任意恒成立,记的前项和为.
(1)若,求的值;
(2)证明:对任意正实数, 成等比数列;
(3)是否存在正实数,使得数列为等比数列.若存在,求出此时和的表达式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数有极值,且在处的切线与直线垂直.
(1)求实数的取值范围;
(2)是否存在实数,使得函数的极小值为.若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为.
(1)写出直线的普通方程和圆的直角坐标方程;
(2)设点,直线与圆相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中, 为坐标原点, 、是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点、,使得为定值,则该定值为________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市一次全市高中男生身高统计调查数据显示:全市名男生的身高服从正态分布.现从某学校高三年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于和之间,将测量结果按如下方式分组: , ,…, ,得到的频率分布直方图如图所示.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这名男生身高在以上(含)的人数;
(Ⅲ)在这名男生身高在以上(含)的人中任意抽取人,该人中身高排名(从高到低)在全市前名的人数记力,求的数学期望.
参考数据:若,则,
, .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com