精英家教网 > 高中数学 > 题目详情

【题目】近一段时间来,由于受非洲猪瘟的影响,各地猪肉价格普遍上涨,生猪供不应求。各大养猪场正面临巨大挑战,目前各项针对性政策措施对于生猪整体产能恢复、激发养殖户积极性的作用正在逐步显现.

现有甲、乙两个规模一致的大型养猪场,均养有1万头猪.根据猪的重量,将其分为三个成长阶段如下表.

猪生长的三个阶段

阶段

幼年期

成长期

成年期

重量(Kg

根据以往经验,两个养猪场内猪的体重均近似服从正态分布.

由于我国有关部门加强对大型养猪场即将投放市场的成年期的猪监控力度,高度重视其质量保证,为了养出健康的成年活猪,甲、乙两养猪场引入两种不同的防控及养殖模式.已知甲、乙两个养猪场内一头成年期猪能通过质检合格的概率分别为

(1)试估算各养猪场三个阶段的猪的数量;

(2)已知甲养猪场出售一头成年期的猪,若为健康合格的猪 ,则可盈利元,若为不合格的猪,则亏损元;乙养猪场出售一头成年期的猪,若为健康合格的猪 ,则可盈利元,若为不合格的猪,则亏损元.记为甲、乙养猪场各出售一头成年期猪所得的总利润,求随机变量的分布列,假设两养猪场均能把成年期猪售完,求两养猪场的总利润期望值.

(参考数据:若,则

【答案】(1)甲、乙两养猪场各有幼年期猪头,成长期猪头,成年期猪头;(2)分布列见解析,135450元.

【解析】

1)根据正态分布的相关知识进行计算即可;

2)根据甲、乙两个养猪场内一头成年期猪能通过质检合格的概率分别为,随机变量可能取值为,分别求出,写出分布列和期望即可.

1)由于猪的体重近似服从正态分布,设各阶段猪的数量分别为

(头);

同理,

(头);

(头).

所以,甲、乙两养猪场各有幼年期猪头,成长期猪头,成年期猪头。

2)依题意,甲、乙两个养猪场内一头成年期猪能通过质检合格的概率分别为,随机变量可能取值为.

所以的分布列为:

所以(元),

由于各养猪场均有头成年猪,一头猪出售的利润总和的期望为元,则总利润期望为(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2xlnxx2

(1)求曲线yfx)在点(1f1))处的切线方程

(2)若方程fx)=a[+∞)有且仅有两个实根(其中fx)为fx)的导函数,e为自然对数的底),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,底面ABCD为矩形,平面PAB⊥平面ABCDABAP=3,ADPB=2,E为线段AB上一点,且AEEB=7︰2,点FG分别为线段PAPD的中点.

(1)求证:PE⊥平面ABCD

(2)若平面EFG将四棱锥PABCD分成左右两部分,求这两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为整数,且为正整数,,记.

(1)试用分别表示

(2)用数学归纳法证明:对一切正整数均为整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的方程为

(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程和直线的极坐标方程;

(2)在(1)的条件下,直线的极坐标方程为,设曲线与直线的交于点和点,曲线与直线的交于点和点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把定义在上,且满足(其中常数满足)的函数叫做似周期函数.

1)若某个似周期函数满足且图像关于直线对称,求证:函数是偶函数;

2)当时,某个似周期函数在时的解析式为,求函数的解析式;

3)对于确定的且当时,,试研究似周期函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=cos2x+2sinsinx).

)求fx)的单调递增区间;

)求函数yfx)的对称轴方程,并求函数fx)在区间[]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDADCDADBCPA=AD=CD=2BC=3EPD的中点,点FPC上,且

(Ⅰ)求证:CD⊥平面PAD

(Ⅱ)求二面角F–AE–P的余弦值;

(Ⅲ)设点GPB上,且.判断直线AG是否在平面AEF内,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

1)若某位顾客消费128元,求返券金额不低于30元的概率;

2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案