精英家教网 > 高中数学 > 题目详情

【题目】

如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.

(Ⅰ)求证:圆心O在直线AD上;

(Ⅱ)求证:点C是线段GD的中点.

【答案】(Ⅰ)见解析;(Ⅱ)见解析

【解析】试题分析:(1)根据题意,若要证圆心在直线上,只须证直线的角平分线即可.由已知因为圆是三角形的内切圆,所以,又,所以,又因为,所以

又因为是等腰三角形,所以的角平分线,∴圆心在直线上.

(2)若要证点是线段的中点,只须证,由(1)可知,所以若要证,可以考虑先证,即只须证,从而可得证.连接 ,由(I)知, 是圆的直径,

,且相切于点

,∴点 是线段 的中点.

试题解析:

(1) ,又 ,又因为是等腰三角形,所以的角平分线,∴圆心O在直线AD上.

(2)连接DF,由(I)知,DH是⊙O的直径,

,又,且相切于点

∴点C是线段GD的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,an+1=(1+ )an+
(1)设bn= ,求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某商业中心O有通往正东方向和北偏东30方向的两条街道,某公园P位于商业中心北偏东角(),且与商业中心O的距离为公里处,现要经过公园P修一条直路分别与两条街道交汇于A,B两处。

(1)当AB沿正北方向时,试求商业中心到A,B两处的距离和;

(2)若要使商业中心O到A,B两处的距离和最短,请确定A,B的最佳位置。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=4x的焦点F的直线交该抛物线于AB两点,O为坐标原点.若|AF|=3,则△AOB的面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)过点(1, ),左右焦点为F1、F2 , 右顶点为A,上顶点为B,且|AB|= |F1F2|.
(1)求椭圆E的方程;
(2)直线l:y=﹣x+m与椭圆E交于C、D两点,与以F1、F2为直径的圆交于M、N两点,且 = ,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的极小值;

(Ⅱ)设定义在上的函数在点处的切线方程为,当时,若内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”?若存在,求出转点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,且tanA=2
(1)求sin2 +cos2A的值;
(2)若a= ,求bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的奇函数f(x)满足:当x>0时,f(x)=lnx,则函数g(x)=f(x)﹣sin4x的零点的个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求证:过点有三条直线与曲线相切;

(Ⅱ)当时, ,求实数的取值范围.

查看答案和解析>>

同步练习册答案