精英家教网 > 高中数学 > 题目详情
已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值范围.
分析:根据对数函数的单调性我们易判断出命题p为真命题时参数a的取值范围,及命题p为假命题时参数a的取值范围;根据二次函数零点个数的确定方法,我们易判断出命题q为真命题时参数a的取值范围,及命题q为假命题时参数a的取值范围;由p且q为假命题,p或q为真命题,我们易得到p与q一真一假,分类讨论,分别构造关于x的不等式组,解不等式组即可得到答案.
解答:解:若p为真,则0<a<1.若q为真,
则△>0即(2a-3)2-4>0解得a<
1
2
或a>
5
2

∵p且q为假,p或q为真,
∴p与q中有且只有一个为真命题.(a>0且a≠1)
若p真q假,则
0<a<1
1
2
≤a<1或1<a≤
5
2

1
2
≤a<1
若p假q真,则
a>1
0<a<
1
2
或a>
5
2

∴a
5
2

综上所述,a的取值范围为:[
1
2
,1)∪(
5
2
,+∞).
点评:本题考查的知识点是复合命题的真假,二次函数的性质,对数函数的性质,其中根据二次函数及对数函数的性质判断两个命题为真或为假时参数a的取值范围,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=
2x-2a,(x≥2a)
2a,(x<2a)
,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:普陀区二模 题型:解答题

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
1
1-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案