精英家教网 > 高中数学 > 题目详情
如图所示,A,B,C是圆O上的三点,CO的延长线与线段BA的延长线交于圆外的点D,若
OC
=m
OA
+n
OB
,则m+n的取值范围是(  )
A、(1,+∞)
B、(-∞,-1)
C、(0,1)
D、(-1,0)
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:如图所示,由A,B,D三点共线,利用向量共线定理可得:存在实数λ满足
OD
OA
+(1-λ)
OB
,又
OD
=t
OC
,t<-1,可得
OC
=
λ
t
OA
+
1-λ
t
OB
,与
OC
=m
OA
+n
OB
比较,即可得出.
解答: 解:如图所示,
∵A,B,D三点共线,
∴存在实数λ满足
OD
OA
+(1-λ)
OB

OD
=t
OC
,t<-1,
t
OC
=λ
OA
+(1-λ)
OB

OC
=
λ
t
OA
+
1-λ
t
OB
,与
OC
=m
OA
+n
OB
比较,
可得m=
λ
t
n=
1-λ
t

则m+n=
1
t
∈(-1,0).
∴m+n的取值范围是(-1,0).
故选:D.
点评:本题考查了向量共线定理、平面向量基本定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+θ)+
3
cos(x+θ),θ∈[-
π
2
π
2
]
,且函数f(x)是偶函数,则θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
为不共线的单位向量,其夹角θ,设
AB
a
+
b
AC
=
a
b
,有下列四个命题:
p1:|
a
+
b
|>|
a
-
b
|?θ∈(0,
π
2
);p2:|
a
+
b
|>|
a
-
b
|?θ∈(
π
2
,π);
p3:若A,B,C共线?λ+μ=1;p4:若A,B,C共线?λ•μ=1.其中真命题的是(  )
A、p1,p4
B、p1,p3
C、p2,p3
D、p2,p4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个空间几何体的直观图和三视图(尺寸如图所示)
(1)设点M为棱PD中点,求证:EM∥平面ABCD;
(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于
2
5
?若存在,确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A类波”,把两个解析式相加称为波的叠加.
(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ21的值;
(2)在“A类波“中有一个是f1(x)=sinx,从 A类波中再找出两个不同的波(每两个波的初相φ都不同)使得这三个不同的波叠加之后是“平波”,即叠加后y=0,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足
PA
=
PB
+
PC
,则
|
PD
|
|
AD
|
的值为(  )
A、
1
3
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△OAB中,点C是点B关于A的对称点,点D是线段OB的一个靠近B的三等分点,DC和OA交于E,设
AB
=a,
AO
=b
(1)用向量
a
b
表示向量
OC
CD

(2)若
OE
=λ
OA
,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有二元关系f(x,y)=(x-y)2+a(x-y)-1,已知曲线Γ:f(x,y)=0
(1)若a=2时,正方形ABCD的四个顶点均在曲线上,求正方形ABCD的面积;
(2)设曲线C与x轴的交点是M、N,抛物线E:y=
1
2
x2+1与 y 轴的交点是G,直线MG与曲线E交于点P,直线NG 与曲线E交于Q,求证:直线PQ过定点(0,3).
(3)设曲线C与x轴的交点是M(u,0)、N(v,0),可知动点R(u,v)在某确定的曲线上运动,曲线与上述曲线C在a≠0时共有4个交点,其分别是:A(x1,|x2)、B(x3,x4)、C(x5,x6)、D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Yi=1,2,…,255),将Yi中的所有元素相加(若Yi中只有一个元素,则和是其自身)得到255个数y1、y2、…、y255,求y13+y23+…+y2553的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=ln
1+x2
1-x2
的单调递增区间.

查看答案和解析>>

同步练习册答案