精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.数列{bn}满足bn=logana,设k,l∈N*bk=
1
1+3l
bl=
1
1+3k

(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.
(3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1.
(1)∵f(an+1)-f(an)=g(an+1+
3
2
)

3(an+1)2+1-3an2-1=2(an+1+
3
2
),即6a^=2an+1?
an+1
an
=3

故数列{an}为等比数列,公比为3.
(2)bn=logana?
1
bn
=logaan
?
1
bn+1
-
1
bn
=loga
an+1
an
=loga3

所以数列{
1
bn
}
是以
1
b1
为首项,公差为loga3的等差数列.
loga3=
1
b
k
-
1
b
l
k-l
=
1+3l-1-3k
k-l
=-3
?a=3-
1
3
=(
1
3
)
1
3

1
bk
=
1
b1
+(k-1)(-3)=1+3l
,且k+l=9
1
b1
=3(k+l)-2=25

1
bn
=25+(n-1)(-3)=28-3n?bn=
1
28-3n

(3)∵k+l=M0?
1
b1
=3M0-2

1
bn
=3M0-2+(n-1)(-3)=3M0-3n+1

假设第m项后有an>1
a=(
1
3
)
1
3
∈(0,1)?
1
bn
=logaan<0

即第m项后
1
bn
<0

于是原命题等价于
1
bm
>0
1
bm+1
<0
?
3M0-3m+1>0      
3M0-3(m+1)+1<0
?M0-
2
3
<m<M0+
1
3

∵m,M∈N*?m=M0故数列{an}从M0+1项起满足an>1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案