精英家教网 > 高中数学 > 题目详情

【题目】中国是茶的故乡,也是茶文化的发源地.中国茶的发现和利用已有四千七百多年的历史,且长盛不衰,传遍全球.为了弘扬中国茶文化,某酒店推出特色茶食品金萱排骨茶,为了解每壶金萱排骨茶中所放茶叶量克与食客的满意率的关系,通过试验调查研究,发现可选择函数模型来拟合的关系,根据以下数据:

茶叶量

1

2

3

4

5

4.34

4.36

4.44

4.45

4.51

可求得y关于x的回归方程为(

A.B.

C.D.

【答案】A

【解析】

根据所给四个选项,分别取对数化简变形,由线性回归方程经过样本中心点,将表中数据求得代入即可检验.

由表中数据可知

对于A化简变形可得,同取对数可知,将代入可得,而,因而A正确;

对于B化简变形可得,同取对数可知,将代入可得,而,所以B错误;

对于C,两边同取对数可知,而表中所给为的相关量,所以C错误;

对于D,两边同取对数可知,而表中所给为的相关量,所以D错误;

综上可知,正确的为A

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校在高一年级一班至六班进行了社团活动满意度调查(结果只有满意不满意两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:

班号

一班

二班

三班

四班

五班

六班

频数

4

5

11

8

10

12

满意人数

3

2

8

5

6

6

现从一班和二班调查对象中随机选取4人进行追踪调查,则选中的4人中恰有2人不满意的概率为___________;若将以上统计数据中学生持满意态度的频率视为概率,在高一年级全体学生中随机抽取3名学生,记其中满意的人数为X,则随机变量X的数学期望是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,短轴长为2,直线l与椭圆有且只有一个公共点.

1)求椭圆的方程;

2)是否存在以原点O为圆心的圆满足:此圆与直线l相交于PQ两点(两点均不在坐标轴上),且OPOQ的斜率之积为定值,若存在,求出此定值和圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,大摆锤是一种大型的游乐设备,常见于各大游乐园.游客坐在圆形的座舱中,面向外.通常,大摆锤以压肩作为安全束缚,配以安全带作为二次保险.座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.大摆锤的运行可以使置身其上的游客惊心动魄.今年元旦,小明去某游乐园玩“大摆锤”,他坐在点处,“大摆锤”启动后,主轴在平面内绕点左右摆动,平面与水平地面垂直,摆动的过程中,点在平面内绕点作圆周运动,并且始终保持,已知,在“大摆锤”启动后,下列个结论中正确的是______(请填上所有正确结论的序号).

①点在某个定球面上运动;

②线段在水平地面上的正投影的长度为定值;

③直线与平面所成角的正弦值的最大值为

④直线与平面所成角的正弦值的最大值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,证明:

2)当时,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若a=1,且f(x)≥m(0+∞)恒成立,求实数m的取值范围;

2)当时,若x=0不是f(x)的极值点,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),

1)讨论的奇偶性与单调性;

2)求的反函数

3)若,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,,沿矩形对角线BD折起形成四面体ABCD,在这个过程中,现在下面四个结论:①在四面体ABCD中,当时,;②四面体ABCD的体积的最大值为;③在四面体ABCD中,BC与平面ABD所成角可能为;④四面体ABCD的外接球的体积为定值.其中所有正确结论的编号为( )

A.①④B.①②C.①②④D.②③④

查看答案和解析>>

同步练习册答案