精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2﹣ax+2lnx(其中a是实数).
(1)求f(x)的单调区间;
(2)若设2(e+ )<a< ,且f(x)有两个极值点x1 , x2(x1<x2),求f(x1)﹣f(x2)取值范围.(其中e为自然对数的底数).

【答案】
(1)解:∵f(x)=x2﹣ax+2lnx(其中a是实数),

∴f(x)的定义域为(0,+∞), =

令g(x)=2x2﹣ax+2,△=a2﹣16,对称轴x= ,g(0)=2,

当△=a2﹣16≤0,即﹣4≤a≤4时,f′(x)≥0,

∴函数f(x)的单调递增区间为(0,+∞),无单调递减区间.

当△=a2﹣16>0,即a<﹣4或a>4时,

①若a<﹣4,则f′(x)>0恒成立,

∴f(x)的单调递增区间为(0,+∞),无减区间.

②若a>4,令f′(x)=0,得

当x∈(0,x1)∪(x2,+∞)时,f′(x)>0,当x∈(x1,x2)时,f′(x)<0.

∴f(x)的单调递增区间为(0,x1),(x2,+∞),单调递减区间为(x1,x2).

综上所述:当a≤4时,f(x)的单调递增区间为(0,+∞),无单调递减区间.

当a>4时,f(x)的单调递增区间为(0,x1)和(x2,+∞),单调递减区间为(x1,x2


(2)解:由(1)知,若f(x)有两个极值点,则a>4,且x1+x2= >0,x1x2=1,∴0<x1<1<x2

又∵ ,a=2( ), ,e+ <3+

又0<x1<1,解得

∴f(x1)﹣f(x2)=( )﹣(

=( )﹣a(x1﹣x2)+2(lnx1﹣lnx2

=(x1﹣x2 ﹣a(x1﹣x2)+2ln

=﹣( )(x1+ )+4lnx1

=

令h(x)= ,( ),

<0恒成立,

∴h(x)在( )单调递减,∴h( )<h(x)<h( ),

﹣4<f(x1)﹣f(x2)< ﹣4ln3,

故f(x1)﹣f(x2)的取值范围为(


【解析】(1)求出f(x)的定义域为(0,+∞), = ,由此利用导数性质和分类讨论思想能求出f(x)的单调区间.(2)推导出f(x1)﹣f(x2)= ,令h(x)= ,( ),则 <0恒成立,由此能求出f(x1)﹣f(x2)的取值范围.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣2ax,a∈R.
(1)若函数y=f(x)存在与直线2x﹣y=0平行的切线,求实数a的取值范围;
(2)设g(x)=f(x)+ ,若g(x)有极大值点x1 , 求证: >a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?(
A.8日
B.9日
C.12日
D.16日

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos ﹣1), =( sin ,cos2 ),函数f(x)= +1.
(1)若x∈[ ,π],求f(x)的最小值及对应的x的值;
(2)若x∈[0, ],f(x)= ,求sinx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为角A,B,C的对边,且满足4cos2 ﹣cos2(B+C)= ,若a=2,则△ABC的面积的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的偶函数f(x),其导函数为f'(x),对任意x∈[0,+∞),均满足:xf'(x)>﹣2f(x).若g(x)=x2f(x),则不等式g(2x)<g(1﹣x)的解集是(
A.(﹣∞,﹣1)
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x0∈R使得关于x的不等式|x﹣1|﹣|x﹣2|≥t成立.
(1)求满足条件的实数t集合T;
(2)若m>1,n>1,且对于t∈T,不等式log3mlog3n≥t恒成立,试求m+n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中 )在 上的单调性正好相反,回答下列问题:
(1)对于 ,不等式 恒成立,求实数 的取值范围;
(2)令 ,两正实数 满足 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(1,0), =(1,1),(x,y)= ,若0≤λ≤1≤μ≤2时,z= (m>0,n>0)的最大值为2,则m+n的最小值为

查看答案和解析>>

同步练习册答案