【题目】已知函数f(x)=x2﹣ax+2lnx(其中a是实数).
(1)求f(x)的单调区间;
(2)若设2(e+ )<a< ,且f(x)有两个极值点x1 , x2(x1<x2),求f(x1)﹣f(x2)取值范围.(其中e为自然对数的底数).
【答案】
(1)解:∵f(x)=x2﹣ax+2lnx(其中a是实数),
∴f(x)的定义域为(0,+∞), = ,
令g(x)=2x2﹣ax+2,△=a2﹣16,对称轴x= ,g(0)=2,
当△=a2﹣16≤0,即﹣4≤a≤4时,f′(x)≥0,
∴函数f(x)的单调递增区间为(0,+∞),无单调递减区间.
当△=a2﹣16>0,即a<﹣4或a>4时,
①若a<﹣4,则f′(x)>0恒成立,
∴f(x)的单调递增区间为(0,+∞),无减区间.
②若a>4,令f′(x)=0,得 , ,
当x∈(0,x1)∪(x2,+∞)时,f′(x)>0,当x∈(x1,x2)时,f′(x)<0.
∴f(x)的单调递增区间为(0,x1),(x2,+∞),单调递减区间为(x1,x2).
综上所述:当a≤4时,f(x)的单调递增区间为(0,+∞),无单调递减区间.
当a>4时,f(x)的单调递增区间为(0,x1)和(x2,+∞),单调递减区间为(x1,x2)
(2)解:由(1)知,若f(x)有两个极值点,则a>4,且x1+x2= >0,x1x2=1,∴0<x1<1<x2,
又∵ ,a=2( ), ,e+ < <3+ ,
又0<x1<1,解得 .
∴f(x1)﹣f(x2)=( )﹣( )
=( )﹣a(x1﹣x2)+2(lnx1﹣lnx2)
=(x1﹣x2) ﹣a(x1﹣x2)+2ln
=﹣( )(x1+ )+4lnx1
= ,
令h(x)= ,( ),
则 <0恒成立,
∴h(x)在( )单调递减,∴h( )<h(x)<h( ),
即 ﹣4<f(x1)﹣f(x2)< ﹣4ln3,
故f(x1)﹣f(x2)的取值范围为( , )
【解析】(1)求出f(x)的定义域为(0,+∞), = ,由此利用导数性质和分类讨论思想能求出f(x)的单调区间.(2)推导出f(x1)﹣f(x2)= ,令h(x)= ,( ),则 <0恒成立,由此能求出f(x1)﹣f(x2)的取值范围.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣2ax,a∈R.
(1)若函数y=f(x)存在与直线2x﹣y=0平行的切线,求实数a的取值范围;
(2)设g(x)=f(x)+ ,若g(x)有极大值点x1 , 求证: >a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )
A.8日
B.9日
C.12日
D.16日
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cos ﹣1), =( sin ,cos2 ),函数f(x)= +1.
(1)若x∈[ ,π],求f(x)的最小值及对应的x的值;
(2)若x∈[0, ],f(x)= ,求sinx的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的偶函数f(x),其导函数为f'(x),对任意x∈[0,+∞),均满足:xf'(x)>﹣2f(x).若g(x)=x2f(x),则不等式g(2x)<g(1﹣x)的解集是( )
A.(﹣∞,﹣1)
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x0∈R使得关于x的不等式|x﹣1|﹣|x﹣2|≥t成立.
(1)求满足条件的实数t集合T;
(2)若m>1,n>1,且对于t∈T,不等式log3mlog3n≥t恒成立,试求m+n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 与 (其中 )在 上的单调性正好相反,回答下列问题:
(1)对于 , ,不等式 恒成立,求实数 的取值范围;
(2)令 ,两正实数 、 满足 ,求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com