精英家教网 > 高中数学 > 题目详情

设a>0,且a≠1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之和为3,则a=________.

2
分析:利用对数函数的性质可知f(x)=logax在区间[a,2a]上的最大与最小值的和为logaa+loga2a=3,解方程可得a的值
解答:由对数函数的性质可知函数f(x)=logax在区间[a,2a]上单调
故最大与最小值的和为logaa+loga2a=3
a2=2a
∵a>0,且a≠1
∴a=2
故答案为:2.
点评:本题主要考查了对数函数的单调性的简单运算,由于本题中给出的是最大值与最小值的和,避免了对底数a的讨论属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、设a>0,且a≠1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之和为3,则a=
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,且a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:函数y=x2+(2a-3)x+1有两个不同零点,如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

4、设a>0,且a≠1,则函数y=ax+1的图象必过的定点坐标是
(-1,1)

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标高一版(A必修1) 2009-2010学年 第12期 总168期 人教课标高一版 题型:013

设a>0,且a≠1,x∈R,则下列结论错误的是

[  ]
A.

loga1=0

B.

logax2=2logax

C.

logaax=x

D.

logaa=1

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>

同步练习册答案