精英家教网 > 高中数学 > 题目详情

设函数数f(x)=2x+数学公式-1(x<0),则f(x)


  1. A.
    有最大值
  2. B.
    有最小值
  3. C.
    是增函数
  4. D.
    是减函数
A
分析:利用基本不等式求最值时,一定要注意满足的条件,不是正数提出负号后再用基本不等式.
解答:∵x<0,∴
当且仅当即x=取等号
故选项为A.
点评:利用基本不等式求最值,注意“一正”“二定”“三相等”要同时满足.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex-e-x
(Ⅰ)证明:f(x)的导数f′(x)≥2;
(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,xn和y1,y2,…,yn,由此得到V个点(x,y)(i-1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex-e-x
(1)证明:f(x)的导数f′(x)≥2;
(2)若对所有x≥0都有 f(x2-1)<e-e-1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<0恒成立,则称函数y=f(x)在区间D上为“凸函数”已知实数m是常数,f(x)=
x4
12
-
mx3
6
-
3x2
2

(1)若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围;
(2)若对满足|m|≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

同步练习册答案