精英家教网 > 高中数学 > 题目详情
1.已知tanα=$\frac{1}{2}$,且α为第三象限角,求sinα与cosα.

分析 利用同角三角函数的基本关系式,化简求解即可.

解答 解:tanα=$\frac{1}{2}$,且α为第三象限角,
可得cosα=2sinα,sin2α+cos2α=1,
解得sinα=$-\frac{\sqrt{5}}{5}$与cosα=$-\frac{2\sqrt{5}}{5}$.

点评 本题考查同角三角函数的基本关系式的应用,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设a>0,f(x)=$\frac{{e}^{x}}{a}$+$\frac{a}{{e}^{x}}$(e为常数,e=2.71828…)在R上满足f(x)=f(-x).
(1)求a的值;
(2)证明:f(x)在(0,+∞)上是增函数;
(3)求函数f(x)在区间[1,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过P(1,2)的l与⊙C:(x-2)2+(y-1)2=9相交于A,B,S△ABC的最大值为$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\left\{\begin{array}{l}x+8,x∈[-1,1]\\ 2x+6,x∈(1,2]\end{array}\right.$,则f(x)的最大值、最小值分别为(  )
A.10,7B.10,8C.8,6D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M={0,1},A={(x,y)|x∈M,y∈M},B={(x,y)|y=-x+1},那么A∩B={(0,1),(1,0)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x2+3x+2在区间(-5,5)上的最大值、最小值分别是(  )
A.42,12B.42,-$\frac{1}{4}$
C.12,-$\frac{1}{4}$D.无最大值,有最小值是-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.写出下列集合中的元素:
(1){小于12的质数};
(2){倒数等于其本身的数};
(3){平方数等于其本身的数}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知方程$\frac{{x}^{2}}{1+k}$+$\frac{{y}^{2}}{1-k}$=1(k<-1)表示双曲线,则双曲线的焦点坐标是(  )
A.(0,$±\sqrt{k}$)B.(0,$±\sqrt{2k}$)C.(0,$±\sqrt{-k}$)D.(0,$±\sqrt{-2k}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的值域.
①f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}+3x-\frac{1}{4}}$;
②f(x)=$\sqrt{1-(\frac{1}{2})^{x}}$;
③f(x)=4x-3•2x+1,x∈[-1,4].

查看答案和解析>>

同步练习册答案