【题目】已知抛物线E:y2=4x,设A、B是抛物线E上分别位于x轴两侧的两个动点,且 = (其中O为坐标原点)
(Ⅰ)求证:直线AB必过定点,并求出该定点Q的坐标;
(Ⅱ)过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.
【答案】解:(Ⅰ)设直线AB的方程为:x=my+t,A( ,y1)、B( ,y2),
联立 得y2﹣4my﹣4t=0,则y1+y2=4m,与y1y2=﹣4t,
由 得: y1y2=﹣18或y1y2=2(舍).
即 ,所以直线AB过定点 ;
(Ⅱ)由(Ⅰ)得 = ,
同理得, = ,
则四边形AGBD面积
= ,
令 ,
则 是对称轴为μ<0,开口向上,函数是关于μ的增函数,当μ=2时函数取得最小值.
故Smin=88.
当且仅当m=1时取到最小值88
【解析】(Ⅰ)设出直线AB的方程,联立直线与抛物线方程,利用数量积为0,求出k,化简直线方程推出直线必过定点,并求出该定点Q的坐标;(Ⅱ)利用韦达定理以及弦长公式,表示出三角形的面积,通过换元法,利用函数的单调性求解最小值即可.
科目:高中数学 来源: 题型:
【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2与 交于A,B两点,求|PA|+|PB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线交轴于,且, 为坐标原点.
(1)求椭圆的方程;
(2)设是椭圆的上顶点,过点分别作直线交椭圆于两点,设这两条直线的斜率分别为,且,证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项都为正数的数列{an}满足a1=1,an2﹣(2an﹣1﹣1)an﹣2an﹣1=0(n≥2,n∈N*),数列{bn}满足b1=1,b1+ b2+ b3+…+ bn=bn+1﹣1(n∈N*)
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体,关于其结构特征,下列说法不正确的是
A. 该几何体是由两个同底的四棱锥组成的几何体
B. 该几何体有12条棱、6个顶点
C. 该几何体有8个面,并且各面均为三角形
D. 该几何体有9个面,其中一个面是四边形,其余均为三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com