精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ex,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断:

①△ABC一定是钝角三角形

②△ABC可能是直角三角形

③△ABC可能是等腰三角形

④△ABC不可能是等腰三角形

其中,正确的判断是

A.①③             B.①④             C.②③             D.②④

 

【答案】

B

【解析】

试题分析:函数是增函数,对于曲线上横坐标成等差数列的三个点A,B,C,且横坐标依次增大,可得出∠ABC一定是钝角故①对,②错;由于由A到B的变化率要小于由B到C的变化率,由两点间距离公式可以得出AB<BC,故三角形不可能是等腰三角形,由此得出③不对,④对.

考点:函数图像及性质

点评:本题的求解要结合函数的图像及性质,通过观察图像可到角的范围,通过变化率得到边长间的大小关系

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案