精英家教网 > 高中数学 > 题目详情

已知椭圆的方程为数学公式,如果直线数学公式与椭圆的一个交点M在x轴的射影恰为椭圆的右焦点F,则椭圆的离心率为 ________.


分析:根据椭圆的方程表示出c,得到F的坐标,由直线与椭圆的一个交点M在x轴的射影恰为椭圆的右焦点F得到MF⊥x轴,即F的横坐标与M的横坐标相等,代入直线求出M的纵坐标,把M的坐标代入椭圆方程即可求出m2,利用a2-b2=c2,求出c的值,再求出a根据椭圆离心率e=求出即可.
解答:由椭圆方程得到右焦点的坐标为(,0),
因为直线与椭圆的一个交点M在x轴的射影恰为椭圆的右焦点F得到MF⊥x轴,
所以M的横坐标为,代入到直线方程得到M的纵坐标为,则M(
把M的坐标代入椭圆方程得:,化简得:(m22+8m2-128=0即(m2-8)(m2+16)=0
解得m2=8,m2=-16(舍去),根据c===2,而a==4
所以椭圆的离心率e===
故答案为:
点评:考查学生会求直线与椭圆的交点坐标,掌握椭圆的一些简单的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(  )
A、
2
2
B、
3
3
C、
6
3
D、
2
2
3

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省广州市高三年级调研测试理科数学试卷(解析版) 题型:解答题

如图,已知椭圆的方程为,双曲线的两条渐近线为.过椭圆的右焦点作直线,使,又交于点,设与椭圆的两个交点由上至下依次为.

(1)若的夹角为,且双曲线的焦距为,求椭圆的方程;

(2)求的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2014届浙江效实中学高二上期末考试理科数学试卷(解析版) 题型:选择题

如图所示,已知椭圆的方程为 ,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(   )

A.            B.             C.             D.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二上学期期中数学试卷 题型:解答题

已知椭圆的方程为双曲线的两条渐近线为,过椭圆的右焦点作直线,使得于点,又交于点与椭圆的两个交点从上到下依次为(如图).

 (1)当直线的倾斜角为,双曲线的焦距为8时,求椭圆的方程;

(2)设,证明:为常数.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二上学期期中数学试卷 题型:解答题

已知椭圆的方程为双曲线的两条渐近线为,过椭圆的右焦点作直线,使得于点,又交于点与椭圆的两个交点从上到下依次为(如图).

 (1)当直线的倾斜角为,双曲线的焦距为8时,求椭圆的方程;

(2)设,证明:为常数.

 

 

 

查看答案和解析>>

同步练习册答案