精英家教网 > 高中数学 > 题目详情

(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。

(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

(1)连于点,连.
的中点,的中点,得到,推出∥平面.
(2) .

解析试题分析:(1)证明:连于点,连.
的中点,
的中点,∴
平面平面,∴∥平面.
(2)法一:设,∵,∴,且
,连
∵平面⊥平面,∴平面
就是二面角的平面角,
中,
中,
,即二面角的余弦值是.…………12分
解法二:如图,建立空间直角坐标系.

.
 
设平面的法向量是,则
,取
设平面的法向量是,则
,取
记二面角的大小是,则
即二面角的余弦值是.
考点:本题主要考查立体几何中的平行关系,角的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,应用空间向量,使问题解答得以简化。本解答提供了两种解法,相互对比,各有优点。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面
的中点.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)证明平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四边形中,对角线,的重心,过点的直线分别交,沿折起,沿折起,正好重合于.

(Ⅰ) 求证:平面平面
(Ⅱ)求平面与平面夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在四棱锥中,平面平面是等边三角形,已知

(Ⅰ)设上的一点,证明:平面平面
(Ⅱ)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在如图的多面体中,⊥平面,的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:
(Ⅲ) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△BCD中,∠BCD=,BC=CD=1,AB⊥平面BCD,∠ADB=,E、F分别是AC、AD上的动点,且

(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知所在的平面,AB是⊙的直径,是⊙上一点,且分别为中点。

(1)求证:平面
(2)求证:
(3)求三棱锥-的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图:

(1)求的大小;
(2)当时,判断的形状,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,棱柱ABCD—的底面为菱 形 ,AC∩BD=O侧棱BD,F的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:平面平面.

查看答案和解析>>

同步练习册答案