已知函数f(x)=ln x-.
(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.
(1)f(x)在(0,+∞)上是单调递增函数
(2)a=-.
(3)a≥-1时,f(x)<x2在(1,+∞)上恒成立
【解析】
试题分析:解 (1)由题意f(x)的定义域为(0,+∞),且f′(x)=+
=
.因为a>0,所以f′(x)>0,故f(x)在(0,+∞)上是单调递增函数. 3分
(2)由(1)可知,f′(x)=.
①若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数,
所以f(x)min=f(1)=-a=,所以a=-
(舍去). 5分
②若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,
所以f(x)min=f(e)=1-=
?a=-
(舍去). 7分
③若-e<a<-1,令f′(x)=0得x=-a,当1<x<-a时,f′(x)<0,所以f(x)在[1,-a]上为减函数;当-a<x<e时,f′(x)>0,所以f(x)在[-a,e]上为增函数,所以f(x)min=f(-a)=ln(-a)+1=?a=-
.
综上所述,a=-.
9分
(3)因为f(x)<x2,所以ln x-<x2.又x>0,所以a>xln
x-x3.
令g(x)=xln x-x3,
h(x)=g′(x)=1+ln x-3x2,h′(x)=-6x=
.
11分
因为x∈(1,+∞)时,h′(x)<0,h(x)在(1,+∞)上是减函数.
所以h(x)<h(1)=-2<0,即g′(x)<0,
所以g(x)在[1,+∞)上也是减函数,则g(x)<g(1)=-1,
所以a≥-1时,f(x)<x2在(1,+∞)上恒成立. 13分
考点:导数的运用
点评:主要是考查了导数在研究函数中的运用,属于基础题。
科目:高中数学 来源: 题型:
已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).
(1)求函数y=g(x)-x在[0,1]上的最小值;
(2)当a≥时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.
(3)当x≥0时,g(x)≥-f(x)+
恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届湖北省大治二中高二3月联考文科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3+x-16,
(1)求曲线y=f(x)在点(2,-6)处的切线的方程;
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;
查看答案和解析>>
科目:高中数学 来源:2012年陕西省高二下期第一次月考理科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于P的直线方程.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题
已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com