精英家教网 > 高中数学 > 题目详情
(本题满分14分)
如图,已知椭圆=1(ab>0),F1F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2·,求椭圆的方程.
(1)e.(2)

试题分析:解:(1)若∠F1AB=90°,则△AOF2为等腰直角三角形,所以有OAOF2
bc.所以ace.
(2)由题知A(0,b),F1(-c,0),F2(c,0),
其中,c,设B(xy).
=2?(c,-b)=2(xcy),解得x
y,即B().
B点坐标代入,得

解得a2=3c2.①
又由·=(-c,-b)·()=
b2c2=1,
即有a2-2c2=1.②
由①,②解得c2=1,a2=3,从而有b2=2.
所以椭圆方程为.
点评:解决的关键是根据椭圆的定义以及三角形的性质得到a,b,c的关系式,同时结合向量的数量积来秋季诶得到其方程,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设点到直线的距离与它到定点的距离之比为,并记点的轨迹为曲线
(Ⅰ)求曲线的方程;
(Ⅱ)设,过点的直线与曲线相交于两点,当线段的中点落在由四点构成的四边形内(包括边界)时,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果双曲线上一点P到它的右焦点距离是8,那么点P到它的左焦点的距离是( )    
A.4B.12C.4或12D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,设点分别是椭圆的左、右焦点,为椭圆上任意一点,且最小值为

(1)求椭圆的方程;
(2)若动直线均与椭圆相切,且,试探究在轴上是否存在定点,点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆两点,交直线于点.若,证明:的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,若直线轴交于点,与椭圆交于不同的两点,且。(14分)
(1)求椭圆的方程;
(2)求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C:(a>b>0)的右焦点为F(1,0),离心率为,P为左顶点。
(1)求椭圆C的方程;
(2)设过点F的直线交椭圆C于A,B两点,若△PAB的面积为,求直线AB的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设定点M(3,)与抛物线=2x上的点P的距离为,P到抛物线准线l的距为,则取最小值时,P点的坐标为
A.(0,0)B.(1,C.(2,2)D.(,-

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:的焦点坐标为),点M()在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设Q(1,0),过Q点引直线与椭圆E交于两点,求线段中点的轨迹方程;

查看答案和解析>>

同步练习册答案