精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=sinx•cos(x-$\frac{π}{6}$)+cos2x-$\frac{1}{2}$.
(1)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(2)求函数f(x)在[一$\frac{π}{4}$,$\frac{π}{3}$]上的减区间.

分析 (1)利用差角公式和将次公式展开,再用两角和的正弦公式化成f(x)=Asin(ωx+φ)形式,求出最大值即对应的x;
(2)求出f(x)的减区间,再求减区间与[一$\frac{π}{4}$,$\frac{π}{3}$]的交集即可.

解答 解:(1)f(x)=sinx•cos(x-$\frac{π}{6}$)+cos2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sinxcosx+$\frac{1}{2}$sin2x+cos2x-$\frac{1}{2}$
=$\frac{\sqrt{3}}{4}$sin2x+$\frac{1}{2}$cos2x=$\frac{\sqrt{3}}{4}$sin2x+$\frac{1}{4}$cos2x+$\frac{1}{4}$=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)+$\frac{1}{4}$.
∴f(x)的最大值是$\frac{1}{2}$$+\frac{1}{4}$=$\frac{3}{4}$,
令2x+$\frac{π}{6}$=$\frac{π}{2}$+2kπ,解得x=$\frac{π}{6}$+kπ.
∴当f(x)取得最大值时x的取值集合是{x|x=$\frac{π}{6}$+kπ,k∈Z}.
(2)令$\frac{π}{2}+2kπ$≤2x+$\frac{π}{6}$≤$\frac{3π}{2}+2kπ$,
解得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,即f(x)的单调递减区间是[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z.
当k=0时,[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ]∩[一$\frac{π}{4}$,$\frac{π}{3}$]=[$\frac{π}{6}$,$\frac{π}{3}$],
当k=-1时,[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ]∩[一$\frac{π}{4}$,$\frac{π}{3}$]=∅,
当k=1时,[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ]∩[一$\frac{π}{4}$,$\frac{π}{3}$]=∅,
∴f(x)在[一$\frac{π}{4}$,$\frac{π}{3}$]上的减区间是[$\frac{π}{6}$,$\frac{π}{3}$].

点评 本题考查了三角函数的恒等变换及性质,对函数进行化简是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax+8的单调递减区间为(-5,5),求函数f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为$\sqrt{3}$,则四面体ABCD外接球的表面积为(  )
A.B.C.D.$\frac{{7\sqrt{7}}}{6}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lg(x+$\frac{a}{x}$)(a∈R).
(1)求f(x)的定义域;
(2)若a<0,集合A={y|y=f(x),$\frac{1}{2}$≤x≤2},B=[-1,1],且A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A(2,3)与点B(6,y)的距离等于4$\sqrt{5}$,则y的值是(  )
A.11或5B.-5或-11C.11D.11或-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知A(1,-1),B(4,2),P为AB的中点,则$\overrightarrow{AP}$的坐标为(  )
A.($\frac{3}{2}$,$\frac{3}{2}$)B.($\frac{3}{2}$,-$\frac{1}{2}$)C.(5,4)D.(3,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图所示,四边形ABCD和BCEF都是平行四边形.
(1)写出与$\overrightarrow{BC}$相等的向量:$\overrightarrow{AD}$,$\overrightarrow{FE}$;
(2)写中与$\overrightarrow{BC}$共线的向量:$\overrightarrow{AD}$,$\overrightarrow{FE}$,$\overrightarrow{DA}$,$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.命题p:?x>0,x+$\frac{1}{x}$>a;命题q:?x0∈R,x02-2ax0+1≤0.
(1)若¬p为真命题,则求a的取值范围;
(2)若p∧q为假命题,则求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.把-1125°表示为2kπ+α(k∈Z,0≤α<2π)的形式是-8π+$\frac{7π}{4}$.

查看答案和解析>>

同步练习册答案