精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x-1|+|x-2|.

(1)求不等式f(x)≥3的解集;

(2)若存在实数x满足f(x)≤-a2+a+7,求实数a的取值范围.

【答案】(1);(2)

【解析】分析:(1)利用零点分段讨论法进行求解;(2)将不等式有解问题转化为求函数的最小值问题,再通过解一元二次不等式进行求解.

详解:(1)f(x)=|x-1|+|x-2|=

x≤1,-2x+3≥3,解得x≤0,

1<x<2,1≥3,所以x,

x≥2,2x-3≥3,解得x≥3.

综上可知,不等式f(x)≥3的解集为(-∞,0][3,+∞).

(2)|x-1|+|x-2|≥|(x-1)-(x-2)|=1,

依题意得-a2+a+7≥1,a2-a-6≤0,

解得-2≤a≤3,

a的取值范围是[-2,3].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,有三座城市,城在城的正西方向,且两座城市之间的距离为城在城的正北方向,且两座城市之间的距离为.由城到城只有一条公路,甲有急事要从城赶到城,现甲先从城沿公路步行到点(不包括两点)处,然后从点处开始沿山路赶往城.若甲在公路上步行速度为每小时,在山路上步行速度为每小时,设(单位:弧度),甲从城赶往城所花的时间为(单位:).

(1)求函数的表达式,并求函数的定义域;

(2)当点在公路上何处时,甲从城到达城所花的时间最少,并求所花的最少的时间的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3 , 则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣ ]上的所有零点的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是(
A.(1,2)
B.[1,2)
C.[0,2)
D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车。每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。今年初投入了电力型公交车辆,混合动力型公交车辆,计划以后电力型车每年的投入量比上一年增加,混合动力型车每年比上一年多投入辆.设分别为第年投入的电力型公交车、混合动力型公交车的数量,设分别为年里投入的电力型公交车、混合动力型公交车的总数量。

1)求,并求年里投入的所有新公交车的总数

2)该市计划用年的时间完成全部更换,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意,若数列满足,则称这个数列为“数列”.

(1)已知数列:是“数列”,求实数的取值范围;

(2)已知等差数列的公差,前项和为,数列是“数列”,求首项的取值范围;

(3)设数列的前项和为,且. 设,是否存在实数,使得数列为“数列”. 若存在,求实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(2 ),曲线C的参数方程为 (α为参数).
(1)直线l过M且与曲线C相切,求直线l的极坐标方程;
(2)点N与点M关于y轴对称,求曲线C上的点到点N的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数既是奇函数又在(﹣11)上是减函数的是(  )

A. B.

C. yx1D. ytanx

查看答案和解析>>

同步练习册答案