精英家教网 > 高中数学 > 题目详情
14.求函数f(x)=$\frac{\sqrt{2x-1}}{x-1}$的定义域.

分析 根据函数成立的条件进行求解即可.

解答 解:要使函数有意义,则$\left\{\begin{array}{l}{x-1≠0}\\{2x-1≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≠1}\\{x≥\frac{1}{2}}\end{array}\right.$,即x≥$\frac{1}{2}$且x≠1,
即函数的定义域为{x|x≥$\frac{1}{2}$且x≠1}.

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求函数y=lnx-x3+2x的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数y=sin(3x+$\frac{π}{3}$)cos(x-$\frac{π}{6}$)+cos(3x+$\frac{π}{3}$)cos(x+$\frac{π}{3}$)的图象关于对称轴对称的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知空间直角坐标系中,点A(-1,1,2),点B(-1,1,0),点C(1,1,0).
(1)求证:△ABC是等腰直角三角形.
(2)将△ABC绕直角边旋转一周得到的旋转体叫什么?并求出这个旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}cos\frac{πx}{2},-1≤x≤1\\{x^2}-1,|x|>1\end{array}\right.$,则关于x的方程f2(x)-3f(x)+2=0的实根的个数是 (  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C1和C2的极坐标方程分别为ρ=6$\sqrt{2}$cos(θ-$\frac{π}{4}$)和ρcos(θ+$\frac{π}{4}$)=4$\sqrt{2}$,长度为1的线段AB的两端点在曲线C2上,点P在曲线C1上,求△PAB面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知不等式x2+(6-a)x+9-3a>0,若该不等式对任意x∈[-2,0]恒成立,则a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知am=-2,则a2m的值为(  )
A.-4B.4C.(-2)mD.2m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a,b为正实数,且a+b=2,则$\frac{{a}^{2}+2}{a}$+$\frac{{b}^{2}}{b+1}$-2的最小值为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案