精英家教网 > 高中数学 > 题目详情
设函数f(x)=
x3
3
-(a+1)x2+4ax+b,其中a、b∈R
若函数f(x)在x=3处取得极小值是
1
2

(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调递增区间.
分析:(Ⅰ)由函数f(x)在x=3处取得极小值是
1
2
,得f′(3)=0,可解得a值,再由f(3)=
1
2
可求得b值;
(Ⅱ)由(Ⅰ)可得f′(x)的表达式,解不等式f′(x)>0即可得到单调增区间;
解答:解:(I)∵f′(x)=x2-2(a+1)x+4a,
∴f′(3)=9-6(a+1)+4a=0,解得 a=
3
2

f(3)=
1
2

所以
27
3
-(a+1)•32+4a×3+b=
1
2
,把a=
3
2
代入该式,解得b=-4,
所以a=
3
2
,b=-4.
(Ⅱ)由(Ⅰ)知,f′(x)=x2-5x+6,
由f′(x)>0,得x>3或x<2,
所以函数f(x)的单调递增区间是(-∞,2),(3,+∞).
点评:本题考查利用导数研究函数的极值及单调性问题,属基础题,准确求导,正确理解导数与单调性、极值的关系是解决问题的基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3-
92
x2+6x-a

(1)对于任意实数x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-(
12
)x-2
,则其零点所在区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-(
1
2
)x-2
,则其零点所在区间为(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-tx+
t-1
2
,t∈R

(I)试讨论函数f(x)在区间[0,1]上的单调性:
(II)求最小的实数h,使得对任意x∈[0,1]及任意实数t,f(x)+|
t-1
2
|+h≥0
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
3
 
-3a
x
2
 
+3bx
的图象与直线12x+y-1=0相切于点(1,-11).
(I)求a,b的值;
(II)如果函数g(x)=f(x)+c有三个不同零点,求c的取值范围.

查看答案和解析>>

同步练习册答案