精英家教网 > 高中数学 > 题目详情
17.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=2,E,F分别是CC1,BC的中点.
(1)求证:EF⊥平面AB1F;
(2)求三棱锥B1-AEF的体积;
(3)若点M是AB上一点,求|FM|+|MB1|的最小值.

分析 (1)由已知条件推导出面ABC⊥面BB1C1C,从而AF⊥EF,由勾股定理得B1F⊥EF.由此能证明EF⊥平面AB1F;
(2)利用等体积法,求三棱锥B1-AEF的体积;
(3)将侧面AB1B,沿AB展开为ABO,使得平面ABO与平面ABC共面,利用余弦定理求|FM|+|MB1|的最小值.

解答 (1)证明:∵F是等腰直角三角形△ABC斜边BC的中点,
∴AF⊥BC.
又∵三棱柱ABC-A1B1C1为直三棱柱,
∴面ABC⊥面BB1C1C,
∴AF⊥面BB1C1C,
∴AF⊥EF.
∵AB=AA1=2,则B1F=$\sqrt{6}$,EF=$\sqrt{3}$,B1E=3,∴B1F⊥EF.
又AF∩B1F=F,∴EF⊥平面AB1F.
(2)解:三棱锥B1-AEF的体积V=${V}_{A-{B}_{1}EF}$=$\frac{1}{3}×\frac{1}{2}×\sqrt{3}×\sqrt{6}×\sqrt{2}$=1;
(3)解:将侧面AB1B,沿AB展开为ABO,使得平面ABO与平面ABC共面,
在△OBF中,BF=$\sqrt{2}$,OB=2,∠OBF=135°,∴OF=$\sqrt{2+4-2×\sqrt{2}×2×(-\frac{\sqrt{2}}{2})}$=$\sqrt{10}$,
∴|FM|+|MB1|的最小值为$\sqrt{10}$.

点评 本题考查直线与平面垂直的证明,考查三棱锥B1-AEF的体积,考查最小值问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知p:$|x-\frac{3}{2}|≤\frac{7}{2}$,q:x2-4x+4-m2<0(m<0),若?p是?q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆C:(x-2)2+(y+m-4)2=1,当m变化时,圆C上的点与原点的最短距离是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<1}\\{f(x-1),x≥1}\end{array}\right.$则f(-1)=$\frac{1}{2}$;f(2)=1;f(log23)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知圆O:x2+y2=1,直线l:y=kx+b(k>0,b>0)是圆的一条切线,且l与椭圆$\frac{{x}^{2}}{2}$+y2=1交于不同的两点A,B.
(1)求k与b的关系;
(2)若弦AB的长为$\frac{4}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\overrightarrow{a}$=(3,4),则与$\overrightarrow{a}$共线的单位向量是(  )
A.(3,4)B.($\frac{3}{5}$,$\frac{4}{5}$)C.($\frac{3}{5}$,$\frac{4}{5}$)或(-$\frac{3}{5}$,-$\frac{4}{5}$)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正四棱台上底面边长为4cm,下底面边长为10cm,侧棱为5cm,求它的斜高和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法错误的有(  )个
(1)棱柱的所有侧棱平行且相等;
(2)直棱柱的侧面是矩形;
(3){平行六面体}⊆{正四棱柱}⊆{长方体}⊆{正方体};
(4)正棱锥的顶点在底面上射影是底面中心;
(5)圆锥的轴截面是等腰三角形;
(6)球的小圆的半径等于球半径.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.5(x-3)2<2的解集是{x|$3-\frac{\sqrt{10}}{5}$<x<3+$\frac{\sqrt{10}}{5}$}.

查看答案和解析>>

同步练习册答案