精英家教网 > 高中数学 > 题目详情
函数f(x)=
1-x2
x
的图象关于(  )
A、x轴对称B、原点对称
C、y轴对称D、直线y=x对称
考点:函数的图象
专题:函数的性质及应用
分析:求函数的定义域,判断函数的奇偶性即可.
解答: 解:要使函数有意义,则
1-x2≥0
x≠0

-1≤x≤1
x≠0

解得-1≤x≤且x≠0,
f(-x)=
1-x2
-x
=-
1-x2
x
=-f(x),
则函数f(x)是奇函数,
则图象关于原点对称.
故选:B
点评:本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinx-sin(x+
π
3
).
(Ⅰ)求f(
3
)的值;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax-1
ex

(1)当a=1时,求f(x)在[0,3]上的最值;
(2)若方程x-1-exm=0有实数解,求实数m的取值范围;
(3)若对任意t∈[
1
2
,2],f(t)>t恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的一元二次方程2x2-ax-2=0的两根为tanα,tanβ(-
π
2
<α<β<
π
2
),函数f(x)=4sinxcosx-acos2x(a∈R).
(1)求tan(α+β)的值.
(2)求证:f(x)在[α,β]上是增函数;
(3)当a为何值时,f(x)在[α,β]上的最大值与最小值之差最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1},B={y|x2+y2=1,x∈A},则A与B的关系是(  )
A、A=BB、A?B
C、A?BD、A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)为定义在(0,+∞)的增函数,且满足f(x)•f[f(x)+
1
x
]=1,求f(1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数g(x)=
2
x
+alnx(a∈R),f(x)=2x+g(x).
(1)试讨论函数g(x)的单调区间;
(2)若a>0,试求f(x)在区间(0,1)内的极值;
(3)求证:2x+
2
x
+alnx-3>0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

cos(
2014π
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin[ωπ(x+
1
3
)]的部分图象如图所示,其中P为函数图象的最高点,A,B是函数图象与x轴的相邻两个交点,若y轴不是函数f(x)图象的对称轴,且tan∠APB=
1
2

(1)求函数f(x)的解析式;
(2)已知角α、β、θ满足f(
2
π
α-
1
3
)•f(
2
π
β-
1
3
)=
2
2
3
且α+β=
4
,tanθ=2,求
sin(θ+α)sin(θ+β)
cos2θ
的值、

查看答案和解析>>

同步练习册答案