精英家教网 > 高中数学 > 题目详情
13.抛物线C:y2=2x的准线方程是x=-$\frac{1}{2}$,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则$|{\overrightarrow{AF}}|+|{\overrightarrow{BF}}|$=9.

分析 根据抛物线的标准方程求得准线方程和焦点坐标,利用抛物线的定义把|AF|+|BF|转化为|AM|+|BN|,再转化为2|PK|,从而得出结论.

解答 解:抛物线C:y2=2x的准线方程是x=-$\frac{1}{2}$,它的焦点F($\frac{1}{2}$,0).
过A作AM⊥直线l,BN⊥直线l,PK⊥直线l,M、N、K分别为垂足,
则由抛物线的定义可得|AM|+|BN|=|AF|+|BF|.
再根据P为线段AB的中点,$\frac{1}{2}$(|AM|+|BN|)=|PK|=$\frac{9}{2}$,∴|AF|+|BF|=9,
故答案为:$x=-\frac{1}{2};9$.

点评 本题主要考查抛物线的定义性值以及标准方程的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=log${\;}_{\frac{1}{2}}$[x2-2(2a-1)x+8],a∈R,若f(x)在[a,+∞)上为减函数,则a的取值范围为(  )
A.(-∞,2]B.(-$\frac{4}{3}$,2]C.(-∞,1]D.(-$\frac{4}{3}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式(-2x-1)(x-1)(x-2)>0的解集为$(-∞,-\frac{1}{2})∪(1,2)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{log_{\frac{1}{2}}}(-x),x<0\end{array}\right.$,若f(a)-2f(-a)>0,则实数a的取值范围是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=4x2-mx+1在(-∞,-2]上递减,在[-2,+∞)上递增,则f(1)=(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.命题“若实数a,b满足a+b<7,则a=2且b=3”的否命题是若实数a,b满足a+b≥7,则a≠2或b≠3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知角α的终边经过点P(4,-3),则sinα+cosα=$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=ax2+bx+1(a,b为实数,且a>0).
(1)若f(-1)=0,且f(x)=0有且仅有一个实数根,求a,b的值;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)若f(x)为偶函数,设F(x)=$\left\{\begin{array}{l}{f(x),(x>0)}\\{-f(x),(x<0)}\end{array}\right.$,mn<0,m+n>0,试比较F(m)+F(n)的值与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.由0、1、2、3、4、5组成没有重复数字的三位偶数有(  )
A.720个B.600个C.60个D.52个

查看答案和解析>>

同步练习册答案