精英家教网 > 高中数学 > 题目详情
7.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)求证:对m∈R,直线l与圆C总有两个不同交点;
(2)设l与圆C交于不同两点A,B,求弦AB的中点M的轨迹方程.

分析 (1)求出圆心C到直线l的距离d和圆的半径r,根据d,r的大小关系即可得出直线l与圆C相交;
(2)设AB中点M(x,y),讨论AB的斜率,由KAB•KCM=-1,化简可得AB中点M的轨迹方程.

解答 解:(1)证明:圆C的圆心为C(0,1),半径为r=$\sqrt{5}$,
圆心C到直线l的距离d=$\frac{|m|}{\sqrt{{m}^{2}+1}}$<1,
∴d<r,
∴直线l与圆C相交,即直线l与圆C总有两个不同交点.
(2)设AB中点M(x,y),当AB的斜率存在时,由题意可得CM⊥AB,故有KAB•KCM=-1.
∴$\frac{y-1}{x-1}$=-1,化简可得(x-$\frac{1}{2}$)2+(y-1)2=$\frac{1}{4}$,
即AB中点M的轨迹方程为(x-$\frac{1}{2}$)2+(y-1)2=$\frac{1}{4}$.
当AB的斜率不存在时,直线AB的方程为x=1,此时AB的中点M的坐标为(1,1),
也满足(x-$\frac{1}{2}$)2+(y-1)2=$\frac{1}{4}$.
综上可得,AB中点M的轨迹方程为(x-$\frac{1}{2}$)2+(y-1)2=$\frac{1}{4}$.

点评 本题主要考查直线和圆的位置关系的判定,直线过定点问题,求点的轨迹方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知a>0,函数f(x)=a2x3-3ax2+2,g(x)=-3ax+3.
(1)若a=1,求函数f(x)的图象在点x=1处的切线方程;
(2)求函数f(x)在区间[-1,1]上的极值;
(3)若?x0∈(0,$\frac{1}{2}$],使不等式f(x0)>g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}(x+1)|,x∈(-1,3)}\\{\frac{4}{x-1},x∈[3,+∞)}\end{array}\right.$则函数g(x)=f[f(x)]-1的零点个数为(  )
A.1B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=-sin2x+msinx+2,当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时函数有最大值为$\frac{3}{2}$,求此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.用反证法证明“如果a≤b,那么$\root{3}{a}≤\root{3}{b}$”,则假设的内容应是$\root{3}{a}>\root{3}{b}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-x.
(1)求f(x)的单调区间及最大值;
(2)若数列{an}的通项公式为${a_n}=1+\frac{1}{2^n}({n∈{N^*}})$,试结合(1)中有关结论证明:a1•a2•a3…an<e(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.X=1!+2!+3!+…+100!,则X的个位数字为(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用边长为48cm的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒.则所做的铁盒容积最大时,在四角截去的小正方形的边长为(  )
A.6 cmB.8 cmC.10 cmD.12 cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x、y满足$\left\{\begin{array}{l}x≥1\\ y≤a\\ x-y≤0\end{array}\right.({a>1})$,若z=2x+y的最大值为9,则实数a的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案