精英家教网 > 高中数学 > 题目详情

【题目】已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是(
A.21
B.20
C.19
D.18

【答案】B
【解析】解答:设{an}的公差为d,由题意得a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,①a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,②
由①②联立得a1=39,d=﹣2,
sn=39n+ ×(﹣2)=﹣n2+40n=﹣(n﹣20)2+400,
故当n=20时,Sn达到最大值400. 故选B.
分析:求等差数列前n项和的最值问题可以转化为利用二次函数的性质求最值问题,但注意n取正整数这一条件.
【考点精析】解答此题的关键在于理解等差数列的前n项和公式的相关知识,掌握前n项和公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知P是直线l:3x-4y+11=0上的动点,PAPB是圆x2y2-2x-2y+1=0的两条切线(AB是切点),C是圆心,那么四边形PACB的面积的最小值是(  )

A. B. 2 C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,前7项和S7=16,又a12+a22+…+a72=128,则a1﹣a2+a3﹣a4+a5﹣a6+a7=(
A.8
B.
C.6
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等比数列,
(1)若an>0,且a2a4+2a3a5a4a6=25,求a3a5.
(2)a1+a2+a3=7,a1a2a3=8,求an.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若存在x0 , 使得 ,则x0称是函数 的一个不动点,设
(1)求函数 的不动点;
(2)对(1)中的二个不动点a、b(假设a>b),求使 恒成立的常数k的值;
(3)对由a1=1,an= 定义的数列{an},求其通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左右顶点分别是为直线上一点(点在轴的上方),直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.

(1)若的面积是的面积的,求直线的方程;

(2)设直线与直线的斜率分别为,求证:为定值;

(3)若的延长线交直线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 中, ,则此数列是( )
A.递增数列
B.递减数列
C.摆动数列
D.常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列各函数中,最小值等于2的函数是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校随机调查80名学生,以研究学生爱好羽毛球运动与性别的关系,得到下面的列联表:

(1)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为,求的分布列和数学期望;

(2)根据表3中数据,能否认为爱好羽毛球运动与性别有关?

附:

查看答案和解析>>

同步练习册答案