精英家教网 > 高中数学 > 题目详情

【题目】已知⊙的半径为,圆心的坐标为,其中为该圆的两条切线,为坐标原点,为切点,在第一象限,在第四象限.

)若时,求切线的斜率.

)若时,求外接圆的标准方程.

)当点在轴上运动时,将表示成的函数,并求函数的最小值.

【答案】(1)斜率为

(2).

(3).

【解析】分析:(1)设出切线方程,根据圆心到切线的距离等于半径可得斜率.(2)由题意外接圆的圆心在轴上,设为结合平面几何的有关知识可得圆心为,半径为进而可得圆的方程.(3)结合(2)中的结论可得点的坐标,进而得向量的坐标,然后根据数量积的结果和函数的单调性可得所求

详解:(时,圆的方程为

由题意得过点的圆的切线的斜率存在,设其方程为

由直线和圆相切得

解得

所以斜率为

)由题意外接圆的圆心在轴上,设为

由平面几何知识得

可得

解得

所以外接圆圆心为,半径为

所以圆

)由()知

可得

所以

所以

所以

易得函数在区间上单调递减,

所以当时,取得最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆C: 经过点P(1, ),离心率e= ,直线l的方程为x=4.

(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1 , k2 , k3 . 问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形, 平面分别为的中点,且.

(1)求证:平面平面

(2)求证:平面P

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】钓鱼岛事件以来,中日关系日趋紧张并不断升级.为了积极响应保钓行动,某学校举办了一场保钓知识大赛,共分两组.其中甲组得满分的有1个女生和3个男生,乙组得满分的有2个女生和4个男生.现从得满分的同学中,每组各任选1个同学,作为保钓行动代言人”.

(1)求选出的2个同学中恰有1个女生的概率;

(2)X为选出的2个同学中女生的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检验设备M与设备N的生产效率,研究人员作出统计,得到如下表所示的结果,则

设备M

设备N

生产出的合格产品

48

43

生产出的不合格产品

2

7

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

参考公式:,其中.

A. 有90%的把握认为生产的产品质量与设备的选择有关

B. 没有90%的把握认为生产的产品质量与设备的选择有关

C. 可以在犯错误的概率不超过0.01的前提下认为生产的产品质量与设备的选择有关

D. 不能在犯错误的概率不超过0.1的前提下认为生产的产品质量与设备的选择有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现要完成下列3项抽样调查:

①从15种疫苗中抽取5种检测是否合格.

②涡阳县某中学共有480名教职工,其中一线教师360名,行政人员48名,后勤人员72名.为了解教职工对学校校务公开方面的意见,拟抽取一个容量为20的样本.

③涡阳县某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.

较为合理的抽样方法是( )

A. ①简单随机抽样, ②系统抽样, ③分层抽样

B. ①简单随机抽样, ②分层抽样, ③系统抽样

C. ①系统抽样, ②简单随机抽样, ③分层抽样

D. ①分层抽样, ②系统抽样, ③简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有 (n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:
设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn
(1)求p2的值;
(2)证明:pn

查看答案和解析>>

同步练习册答案