分析 直接利用交集运算求解方程组得答案.
解答 解:∵A={(x,y)|2x-y=1},B={(x,y)|5x+y=6},C={(x,y)|2x=y+1},D={(x,y)|2x-y=8}},
∴A∩B={(x,y)|$\left\{\begin{array}{l}{2x-y=1}\\{5x+y=6}\end{array}\right.$}={(1,1)},
B∩C={(x,y)|$\left\{\begin{array}{l}{5x+y=6}\\{2x=y+1}\end{array}\right.$}={(1,1)},
A∩D={(x,y)|$\left\{\begin{array}{l}{2x-y=1}\\{2x-y=8}\end{array}\right.$}=∅.
故答案为:{(1,1)},{(1,1)},∅.
点评 本题考查交集及其运算,考查了方程组的解法,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com