精英家教网 > 高中数学 > 题目详情

【题目】已知圆:,直线.

(1)若直线与圆相切,的值;

(2)若直线与圆交于不同的两点,当∠AOB为锐角时,k的取值范围;

(3),是直线上的动点,作圆的两条切线,切点为,探究:直线是否过定点。

【答案】(1) ; (2); (3) .

【解析】

(1)由直线l与圆O相切,得圆心O(0,0)到直线l的距离等于半径r=,由此能求出k.

(2)设A,B的坐标分别为(x1,y1),(x2,y2),将直线l:y=kx﹣2代入x2+y2=2,得(1+k2)x2﹣4kx+2=0,由此利用根的判断式、向量的数量积公式能求出k的取值范围.

(3)由题意知O,P,C,D四点共圆且在以OP为直径的圆上,设P(t,),其方程为,C,D在圆O:x2+y2=2上,求出直线CD:(x﹣)t﹣2y﹣2=0,联立方程组能求出直线CD过定点().

(1)由圆心O到直线l的距离可得k=±1。

(2)A,B的坐标分别为(x1,y1),(x2,y2),

将直线l:y=kx-2代入x2+y2=2,整理,(1+k2)·x2-4kx+2=0,

所以,Δ=(-4k)2-8(1+k2)>0,k2>1当∠AOB为锐角时,

,可得k2<>

又因为k2>1,k的取值范围为

(3)设切点C,D的坐标分别为(x1,y1),(x2,y2),

动点P的坐标为(x0,y0),则过切点C的切线方程为:x·x1+y·y1=2,所以x0·x1+y0·y1=2

同理,过切点D的切线方程为:x0·x2+y0·y2=2,

所以过C,D的直线方程为:x0·x+y0·y=2

,将其代入上式并化简整理,

,x0∈R,

-2y-2=0,可得,y=-1,即直线CD过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学,给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答,统计情况如下表:(单位:人)

几何题

代数题

总计

男 同学

22

8

30

女同学

8

12

20

总计

30

20

50

(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?

(2)现从选择几何题的8名女生中任意抽取两人对他们的答题进行研究,记甲、乙两名女生被抽到的人数为的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,分别是的中点.

(Ⅰ)求证:四点共面;

(Ⅱ)求证:平面∥平面

(Ⅲ)画出平面与正方体侧面的交线(需要有必要的作图说明、保留作图痕迹).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是奇函数,是偶函数,且其中.

1)求的表达式,并求函数的值域

2)若关于的方程在区间内恰有两个不等实根,求常数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,角所对的边分别为,满足

1)求的大小;

2)如图,,在直线的右侧取点,使得.当角为何值时,四边形面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“荆、荆、襄、宜七校联考”正在如期开展,组委会为了解各所学校学生的学情,欲从四地选取200人作样本开展调研.若来自荆州地区的考生有1000人,荆门地区的考生有2000人,襄阳地区的考生有3000人,宜昌地区的考生有2000人.为保证调研结果相对准确,下列判断正确的有(  )

①用分层抽样的方法分别抽取荆州地区学生25人、荆门地区学生50人、襄阳地区学生75人、宜昌地区学生50人;

②可采用简单随机抽样的方法从所有考生中选出200人开展调研;

③宜昌地区学生小刘被选中的概率为

④襄阳地区学生小张被选中的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,规定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低元,根据市场调查,销售商一次订购不会超过600.

1设一次订购件,服装的实际出厂单价为元,写出函数的表达式;

2当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率.

(1)求的方程;

(2)设直线经过点且与相交于两点(异于点),记直线的斜率为,直线的斜率为,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知椭圆)的半焦距为,原点到经过两点的直线的距离为

)求椭圆的离心率;

)如图,是圆的一条直径,若椭圆经过两点,求椭圆的方程.

查看答案和解析>>

同步练习册答案