精英家教网 > 高中数学 > 题目详情
2.设奇函数f(x)在区间[-7,-3]上是减函数且最大值为-5,函数g(x)=$\frac{ax+1}{x+2}$,其中a<$\frac{1}{2}$.
(1)判断并用定义法证明函数g(x)在(-2,+∞)上的单调性;
(2)求函数F(x)=f(x)+g(x)在区间[3,7]上的最小值.

分析 (1)根据函数单调性的定义证明即可;(2)分别求出f(x)和g(x)的最小值,求出F(x)的最小值即可.

解答 解:(1)函数g(x)在(-2,+∞)上是减函数,
证明如下:
设-2<x1<x2
∵g(x)=a+$\frac{1-2a}{x+2}$,
∴g(x2)-g(x1
=(a+$\frac{1-2a}{{x}_{2}+2}$)-(a+$\frac{1-2a}{{x}_{1}+2}$)
=(1-2a)•$\frac{{x}_{1}{-x}_{2}}{{(x}_{2}+2){(x}_{1}+2)}$,
∵-2<x1<x2
∴$\frac{{x}_{1}{-x}_{2}}{{(x}_{2}+2){(x}_{1}+2)}$<0,
∵a<$\frac{1}{2}$,∴g(x2)<g(x1),
∴a<$\frac{1}{2}$时,g(x)在(-2,+∞)递减;
(2)由题意得:f(x)max=f(-7)=-5,且f(x)是奇函数,
∴f(7)=5,即f(x)在区间[3,7]上的最小值是5,
由(1)得:g(x)在[3,7]上也是减函数,
∴F(x)min=f(7)+g(7)=$\frac{7a+46}{9}$.

点评 本题考查了函数单调性的证明,考查函数的单调性、最值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,角A、B、C的对边分别为a、b、c,$\overrightarrow m=(b,c-a),\overrightarrow n=(b-c,c+a)$,若$\overrightarrow m⊥\overrightarrow n,a=3$,
则$\frac{c}{sinC}$的值为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点P是△ABC内一点,且$\overrightarrow{PA}+2\overrightarrow{PB}+3\overrightarrow{PC}=\overrightarrow 0$,则△ABP与△ABC的面积之比是(  )
A.1:5B.1:2C.2:5D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={-1,1,3},B={a+2,4},A∩B={3},则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式|x-1|≥5的解集是{x|x≥6或x≤-4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的图象为如图所示的折线ABC,则$\int_{-1}^1{[xf(x)]}dx$=(  )
A.$-\frac{1}{3}$B.$-\frac{1}{6}$C.0D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知P,Q分别在曲线$\frac{x^2}{9}+\frac{y^2}{8}=1$、(x-1)2+y2=1上运动,则|PQ|的取值范围[1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线$\sqrt{3}x+y-2=0$的倾斜角为(  )
A.30oB.150oC.60oD.120o

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在四面体ABCD中,AB=CD=2,AB与CD所成的角为45°,点E,F,G,H分别在棱EC,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是1.

查看答案和解析>>

同步练习册答案