精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C的参数方程为为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.

1)求曲线C的极坐标方程和直线l的直角坐标方程;

2)若射线与曲线C交于点A(不同于极点O,与直线l交于点B,求的最大值.

【答案】1,直线;(2

【解析】

1)由消参法把参数方程化为普通方程,再由公式进行直角坐标方程与极坐标方程的互化;

2)由极径的定义可直接把代入曲线和直线的极坐标方程,求出极径,把比值化为的三角函数,从而可得最大值、

1)消去参数可得曲线的普通方程是,即,代入,即曲线的极坐标方程是

,化为直角坐标方程为

2)设,则

时,取得最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若方程的实根个数不少于2个,证明:

2)若处导数相等,求的取值范围,使得对任意的,恒有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Ox2+y23,直线PA与圆O相切于点A,直线PB垂直y轴于点B,且|PB|2|PA|.

1)求点P的轨迹E的方程;

2)过点(10)且与x轴不重合的直线与轨迹E相交于PQ两点,在x轴上是否存在定点D,使得x轴是∠PDQ的角平分线,若存在,求出D点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,大摆锤是一种大型游乐设备,常见于各大游乐园.游客坐在圆形的座舱中,面向外.通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险.座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.今年五一,小明去某游乐园玩大摆锤,他坐在点A处,大摆锤启动后,主轴在平面内绕点O左右摆动,平面与水平地面垂直,摆动的过程中,点A在平面内绕点B作圆周运动,并且始终保持.已知,在大摆锤启动后,给出下列结论:

①点A在某个定球面上运动;

②线段在水平地面上的正投影的长度为定值;

③直线与平面所成角的正弦值的最大值为

与水平地面所成角记为,直线与水平地面所成角记为,当时,为定值.

其中正确结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:

直线l的参数方程化为极坐标方程;

求直线l与曲线C交点的极坐标其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若a=1,且f(x)≥m(0+∞)恒成立,求实数m的取值范围;

2)当时,若x=0不是f(x)的极值点,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的辅助圆”.过椭圆第四象限内一点Mx轴的垂线交其辅助圆于点N,当点N在点M的下方时,称点N为点M下辅助点”.已知椭圆E上的点的下辅助点为(1,﹣1.

1)求椭圆E的方程;

2)若△OMN的面积等于,求下辅助点N的坐标;

3)已知直线lxmyt0与椭圆E交于不同的AB两点,若椭圆E上存在点P,满足,求直线l与坐标轴围成的三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂能够生产甲、乙两种产品,已知生产这两种产品每吨所需的煤、电以及每吨的产值分别是:

用煤(t

用电(kw

产值(千元)

甲种产品

70

20

80

乙种产品

30

50

110

如果该厂每月至多供煤560t,供电450kw,问如何安排生产,才能使该厂月产值最大?月产值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

1)求椭圆C的标准方程;

2)设F为椭圆C的左焦点,T为直线上任意一点,过FTF的垂线交椭圆C于点PQ.

i)证明:OT平分线段PQ(其中O为坐标原点);

ii)当最小时,求点T的坐标.

查看答案和解析>>

同步练习册答案