【题目】椭圆焦点在
轴上,离心率为
,上焦点到上顶点距离为
.
(1)求椭圆的标准方程;
(2)直线与椭圆
交与
两点,
为坐标原点,
的面积
,则
是否为定值,若是求出定值;若不是,说明理由.
科目:高中数学 来源: 题型:
【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为且
;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为
分,乙和丙最后得分都是
分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )
A. 乙有四场比赛获得第三名
B. 每场比赛第一名得分为
C. 甲可能有一场比赛获得第二名
D. 丙可能有一场比赛获得第一名
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由中央电视台综合频道和唯众传媒联合制作的
开讲啦
是中国首档青年电视公开课,每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了A、B两个地区的100名观众,得到如表的
列联表,已知在被调查的100名观众中随机抽取1名,该观众是B地区当中“非常满意”的观众的概率为
.
非常满意 | 满意 | 合计 | |
A | 30 | 15 | |
B | |||
合计 |
完成上述表格并根据表格判断是否有
的把握认为观众的满意程度与所在地区有关系;
若以抽样调查的频率为概率,从A地区随机抽取3人,设抽到的观众“非常满意”的人数为X,求X的分布列和期望.
附:参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,其中e为自然对数的底数.
(1)当a=0时,求函数f (x)的单调减区间;
(2)已知函数f (x)的导函数f (x)有三个零点x1,x2,x3(x1 x2 x3).①求a的取值范围;②若m1,m2(m1 m2)是函数f (x)的两个零点,证明:x1m1x1 1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,准线方程为
,直线
过定点
(
)且与抛物线交于
、
两点,
为坐标原点.
(1)求抛物线的方程;
(2)是否为定值,若是,求出这个定值;若不是,请说明理由;
(3)当时,设
,记
,求
的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①,
,②
,
,③
,
三个条件中任选一个补充在下面问题中,并加以解答.
已知的内角A,B,C的对边分别为a,b,c,若
,______,求
的面积S.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com