精英家教网 > 高中数学 > 题目详情
(本小题满分10分)如图,在三棱柱中,点D是BC的中点,欲过点作一截面与平面平行,问应当怎样画线,并说明理由。
解:(Ⅰ)取的中点E,连结
则平面∥平面……………………4分
∵D为BC的中点,E为的中点,∴
又∵BC∥,∴四边形为平行四边形,
∥BE,……………………………………7分
连结DE,则DE
∴DE,
∴四边形是平行四边形,
∴AD∥……………………………………………………………10分
又∵ 平面,∴平面∥平面。………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱中,的中点,是线段上的动点,且
(1)若,求证:
(2) 求二面角的余弦值;
(3) 若直线与平面所成角的大小为,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在棱长为2的正方体中,分别为的中点.
(Ⅰ)求证://平面
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图2,正方体中,分别是棱的中点.         
(1)求证:直线∥平面
(2)求证:平面∥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,侧面⊥底面,底面为直角梯形,其中
,O为中点。
(Ⅰ)求证:平面 ;
(Ⅱ)求锐二面角A—C1D1—C的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)证明直线和平面垂直的判定定理,即已知:如图1, 求证:
(2)请用直线和平面垂直的判定定理证明:如果一条直线垂直于两个平行平面中的一个,那么它也垂直于另一个平面,即
已知:如图2, 求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图所示,在三棱锥A-BCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.

(1)求证:四边形EFGH是平行四边形;
(2)若AC=BD,求证:四边形EFGH是菱形;
(3)当AC与BD满足什么条件时,四边形EFGH是正方形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在四棱锥中,四边形是正方形,平面,且分别是的中点.

⑴求证:平面平面
⑵求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

解答题
22.如图:是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的任意一点,求证:平面

查看答案和解析>>

同步练习册答案