精英家教网 > 高中数学 > 题目详情

【题目】已知复数z=3+bi(b∈R),且(1+3i)z为纯虚数.
(1)求复数z;
(2)若 ,求复数w的模|w|.

【答案】
(1)解:(1+3i)(3+bi)=(3﹣3b)+(9+b)i

∵(1+3i)z是纯虚数

∴3﹣3b=0,且9+b≠0

∴b=1,∴z=3+i


(2)解:

=


【解析】(1)把复数z代入表达式,利用复数是纯虚数健康求出z.(2)把z代入复数w的表达式,利用复数的除法运算的法则,化为a+bi的形式,然后求出复数的模即可.
【考点精析】关于本题考查的复数的模(绝对值),需要了解复平面内复数所对应的点到原点的距离,是非负数,因而两复数的模可以比较大小;复数模的性质:(1)(2)(3)若为虚数,则才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,AA1=AB=AC=2,BC=2 ,M,N分别是CC1 , BC的中点,点P在直线A1B1上,且

(1)证明:无论λ取何值,总有AM⊥PN;
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角取最大值时的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(ax2﹣x+1),其中a>0且a≠1.
(1)当a= 时,求函数f(x)的值域;
(2)当f(x)在区间 上为增函数时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解关于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集为(﹣1,3),求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,常数a>0.
(1)设mn>0,证明:函数f(x)在[m,n]上单调递增;
(2)设0<m<n且f(x)的定义域和值域都是[m,n],求常数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=
(1)求年利润W(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,则异面直线A1C与B1C1所成的角为 . .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)作出函数f(x)的图象;
(2)直接写出函数f(x)的值域;
(3)求 f[f(﹣1)]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体S﹣ABC中, ,二面角S﹣AC﹣B的余弦值为- ,则该四面体外接球的表面积是(
A.
B.
C.24π
D.6π

查看答案和解析>>

同步练习册答案