精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,满足
(Ⅰ)求∠C的大小;
(Ⅱ)求sin2A+sin2B的取值范围.

【答案】解:(Ⅰ)在△ABC中,∵

∴由正弦定理可得:

∴sinCcosB+sinBcosC+2sinAcosC=0,

∴sinA+2sinAcosC=0,

∵sinA≠0,

∵0<C<π.

(Ⅱ)∵

又∵

故得sin2A+sin2B的取值范围是[ ).


【解析】(Ⅰ)利用正弦定理将边化角,结合和与差的公式可得∠C的大小.(Ⅱ)降次后利用辅助角公式转化为三角函数,利用三角函数的有界限即可得取值范围.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正弦定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足xf′(x)>f(x),则不等式(x﹣1)f(x+1)>f(x2﹣1)的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x3﹣3ax+3a在区间(0,2)内有极小值,则a的取值范围是(  )
A.a>0
B.a>2
C.0<a<2
D.0<a<4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.则实数m的取值范围为(
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图(N∈N*),那么输出的p是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F2 , P分别为双曲线 =1(a>0,b>0)的右焦点与右支上的一点,O为坐标原点,若 = + ), = 且2 =a2+b2 , 则该双曲线的离心率为(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 (a>b>0)的左右顶点分别是A(﹣ ,0),B( ,0),离心率为 .设点P(a,t)(t≠0),连接PA交椭圆于点C,坐标原点是O.
(Ⅰ)证明:OP⊥BC;
(Ⅱ)若三角形ABC的面积不大于四边形OBPC的面积,求|t|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋时期的数学家秦九韶是普州(现四川省安岳县)人,秦九韶在其所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一例,则输出的S的值为(
A.4
B.﹣5
C.14
D.﹣23

查看答案和解析>>

同步练习册答案