精英家教网 > 高中数学 > 题目详情
16.已知抛物线E:x2=4y,过M(1,4)作抛物线E的弦AB,使弦AB以M为中点,
(1)求弦AB所在直线的方程.
(2)若直线l:y=x+b与抛物线E相切于点P,求以点P为圆心,且与抛物线E的准线相切的圆的方程.

分析 (1)设A(x1,y1),B(x2,y2),利用平方差法,求出直线的斜率,然后求解直线方程.
(2)利用函数的导数求出曲线的斜率,求出切点坐标,得到圆的圆心坐标,求出圆的半径,即可求解圆的方程.

解答 解:(1)设A(x1,y1),B(x2,y2),
抛物线E:x2=4y,过M(1,4)作抛物线E的弦AB,使弦AB以M为中点
由$\left\{\begin{array}{l}{{x}_{1}}^{2}{=4y}_{1}\\{{x}_{2}}^{2}{=4y}_{2}\end{array}\right.$,两式相减化简得KAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{1}{2}$,
所以直线AB的方程为y-4=$\frac{1}{2}$(x-0),即x-2y+7=0.
(2)设切点P(x0,y0),
由x2=4y,得y′=$\frac{x}{2}$,所以$\frac{{x}_{0}}{2}$=1,
可得x0=2,即点P(2,1),
圆P的半径为2,所以圆P的方程为:(x-2)2+(y-1)2=4.

点评 本题考查抛物线的简单性质,考查运算求解能力,平方差法以及设而不求方法的应用,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.a、b、c为三条不重合的直线,α、β、γ为三个不重合平面,现给出四个命题
①$\left.{\begin{array}{l}{a∥γ}\\{b∥γ}\end{array}}\right\}⇒a∥b$  ②$\left.\begin{array}{l}α∥c\\ β∥c\end{array}\right\}⇒α∥β$ ③$\left.\begin{array}{l}α∥γ\\ β∥γ\end{array}\right\}⇒α∥β$  ④$\left.\begin{array}{l}α∥c\\ a∥c\end{array}\right\}⇒α∥a$
其中正确的命题是(  )
A.??①②B.?③④C.?③D.??③②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2ax+2.
(1)若方程f(x)=0有两不相等的正根,求a的取值范围;
(2)若函数f(x)对任意x∈R都有f(x)=f(2-x)成立,且对任意x∈(0,3)都有不等式f(x)<2x+m恒成立,求实数m的取值范围;
(3)设g(a)是f(x)在x∈[-5,5]的最小值,求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果a、b、c、d∈R,则下列命题中正确的是(  )
A.若a>b,c>b,则a>cB.若a>-b,则c-a<c+b
C.若a>b,则ac2>bc2D.若a>b,c>d,则ac>bd

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在锐角△ABC中,A、B、C的对边分别是a,b,c,(a2+c2-b2)tanB=$\frac{4\sqrt{2}}{3}$ac.
(1)求sinB的值;
(2)若b=2,S△ABC=$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={m,5},B={m2+1,m,2},若x∈A是x∈B的充分条件,则实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,函数f(x)=min{|x-1|,-x2+11},若集合A={x|f(x)=m}中有4个元素,则实数m的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,矩形ABCD中,AB=2AD=2,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,在△ADE翻折的过程中,有下列命题:
①BM是定值;
②点M在表面积为5π的球面上运动;
③存在某个位置,使DE⊥A1C;
④存在某个位置,使MB∥平面A1DE;
⑤三棱锥A1-CDE体积的最大值是$\frac{\sqrt{2}}{6}$.
其中,所有正确命题的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A、B、C的对边分别为a、b、c,若$\frac{a}{b}$+$\frac{2b}{a}$=3cosC,则$\frac{sin(A-B)}{sinC}$的值等于3.

查看答案和解析>>

同步练习册答案