【题目】如图,点C在以AB为直径的圆上运动,PA⊥平面ABC,且PA=AC,D,E分别是PC,PB的中点.
(1)求证:PC⊥平面ADE.
(2)若二面角C﹣AE﹣B为60°,求直线AB与平面ADE所成角的大小.
【答案】(1)见解析(2)30°.
【解析】
(1)由已知可得BC⊥平面PAC,进而有DE⊥平面PAC,可得DE⊥PC,再由已知可得AD⊥PC,即可证明结论;
(2)设PA=AC=1,设BC=t,建立以C为原点,CB为x轴,CA为y轴,过点C作的平行线为z轴,建立空间直角坐标系,求出平面ACE的法向量和平面ABE的法向量,结合已知求出,求出坐标,用线面角公式即可求解.
(1)证明:∵点C在以AB为直径的圆上运动,PA⊥平面ABC,
∴BC⊥PA,BC⊥AC,∵AC∩PA=A,∴BC⊥平面PAC,
∵D,E分别是PC,PB的中点,∴DE∥BC,
∴DE⊥平面PAC,又PC平面PAC,∴DE⊥PC,
∵PA=AC,D是PC中点,∴AD⊥PC,
∵DE∩AD=D,∴PC⊥平面ADE.
(2)以C为原点,CB为x轴,CA为y轴,
过点C作的平行线为z轴,建立空间直角坐标系,
设PA=AC=1,设BC=t,则A(0,1,0),B(t,0,0),
C(0,0,0),P(0,1,1),E(),
(t,﹣1,0),(0,﹣1,0),(,),
设平面ACE的法向量(x,y,z),
则,取x=1,得(1,0,﹣t),
设平面ABE的法向量(x,y,z),
则,取x=1,得(1,t,0),
∵二面角C﹣AE﹣B为60°,
∴cos60°,解得t=1,(t=﹣1,舍),
∴B(1,0,0),(﹣1,1,0),
由(1)得为平面ADE的法向量
设直线AB与平面ADE所成角的大小为θ,
则sinθ,∴θ=30°,
∴直线AB与平面ADE所成角的大小为30°.
科目:高中数学 来源: 题型:
【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:与轴交于,两点,为椭圆的左焦点,且是边长为2的等边三角形.
(1)求椭圆的方程;
(2)设过点的直线与椭圆交于不同的两点,,点关于轴的对称点为(与,都不重合),判断直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).
(1)若道路PB与桥AB垂直,求道路PB的长;
(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;
(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块半圆形空地,开发商计划建造一个矩形游泳池及左右两侧两个大小相同的矩形休息区,其中半圆的圆心为,半径为,矩形的一边在上,矩形的一边在上,点在圆周上,在直径上,且,设.若每平方米游泳池的造价和休息区造价分别为和.
(1)记游泳池及休息区的总造价为,求的表达式;
(2)为进行投资预算,当为何值时,总造价最大?并求出总造价的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如表是我国2012年至2018年国内生产总值(单位:万亿美元)的数据:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
国内生产总值 (单位:万亿美元) | 8.5 | 9.6 | 10.4 | 11 | 11.1 | 12.1 | 13.6 |
(1)从表中数据可知和线性相关性较强,求出以为解释变量为预报变量的线性回归方程;
(2)已知美国2018年的国内生产总值约为20.5万亿美元,用(1)的结论,求出我国最早在那个年份才能赶上美国2018年的国内生产总值?
参考数据:,
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:
,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com