精英家教网 > 高中数学 > 题目详情

【题目】下列各题中,的什么条件?

1为自然数,为整数;

2

3

4:四边形的一组对边相等,:四边形为平行四边形;

5:四边形的对角线互相垂直,:四边形为菱形.

【答案】1)充分不必要条件;(2)必要不充分条件;(3)充分不必要条件;(4)必要不充分条件;(5)必要不充分条件.

【解析】

由充分与必要条件的概念,结合已有知识,逐个判断的互相推出性即可.

为自然数,则一定为整数,即可以推出,反过来,为整数,则不一定是自然数,例如,即不能推出,故的充分不必要条件;

不一定成立,例如,即不能推出,反过来,一定成立,即可以推出,故的必要不充分条件;

一定成立,即可以推出,反过来,不一定成立,例如,即不能推出,故的充分不必要条件;

一组对边相等的四边形不一定是平行四边形,例如等腰梯形,反过来,平行四边形的一组对边相等成立,即不能推出,可以推出,故的必要不充分条件;

对角线互相垂直的四边形不一定是菱形,有可能为等腰梯形,反过来,菱形的对角线一定互相垂直,即不能推出,可以推出,故的必要不充分条件;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆经过抛物线与坐标轴的三个交点.

(1)求圆的方程;

(2)经过点的直线与圆相交于两点,若圆两点处的切线互相垂直,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合是集合 的一个含有个元素的子集.

(Ⅰ)当时,

(i)写出方程的解

(ii)若方程至少有三组不同的解,写出的所有可能取值.

(Ⅱ)证明:对任意一个,存在正整数使得方程 至少有三组不同的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为),则出厂价相应地提高比例为,同时预计年销售量增加的比例为,已知年利润=(出厂价-投入成本)×年销售量.

1)写出本年度预计的年利润与投入成本增加的比例的关系式;

2)为使本年度的年利润比上年度有所增加,则投入成本增加的比应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆经过伸缩变换后得到曲线以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为

(1)求曲线的直角坐标方程及直线的直角坐标方程;

(2)设点上一动点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数的定义域为D. 如果存在实数使得对任意满

x恒成立,则称函数.

1)设函数,试判断是否为函数,并说明理由;

2)设函数,其中常数,证明: 函数;

3)若是定义在上的函数,且函数的图象关于直线m为常数)对称,试判断是否为周期函数?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线.

(1)当时,求曲线在处的切线方程;

2)过点作曲线的切线,若所有切线的斜率之和为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)已知为平面内的两个定点,过点的直线与椭圆交于 两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

同步练习册答案