精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{x+2(x≤-2)}\\{{2}^{x}(-2<x<3)}\\{lnx(x≥3)}\end{array}\right.$,则f(f(-2))=1.

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{x+2(x≤-2)}\\{{2}^{x}(-2<x<3)}\\{lnx(x≥3)}\end{array}\right.$,将x=-2代入可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{x+2(x≤-2)}\\{{2}^{x}(-2<x<3)}\\{lnx(x≥3)}\end{array}\right.$,
∴f(-2)=0,
∴f(f(-2))=f(0)=1,
故答案为:1.

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某校从高二年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图的频率分布直方图.
(1)求图中实数a的值;
(2)若该校高二年级共有学生640人,试估计该校高二年级期中考试数学成绩不低于40分的人数;
(3)若从样本中随机选取数学成绩在[40,50)与[90,100]两个分数段内的两名学生,求这两名学生的数学成绩之差的绝对值大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点A(-$\sqrt{2}$,0),B($\sqrt{2}$,0),P是平面内的一个动点,直线PA与PB交于点P,且它们的斜率之积是-$\frac{1}{2}$.
(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+1与曲线C交于M、N两点,当线段MN的中点在直线x+2y=0上时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设点A(-5,2),B(1,4),点M为线段AB的中点.则过点M,且与直线3x+y-2=0平行的直线方程为3x+y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2bx+c,且f(1)=f(3)=-1.设a>0,将函数f(x)的图象先向右平移a个单位长度,再向下平移a2个单位长度,得到函数g(x)的图象.
(Ⅰ)若函数g(x)有两个零点x1,x2,且x1<4<x2,求实数a的取值范围;
(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有$\frac{μ-λ}{n-m}>8$,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.程序框图如图所示,当$A=\frac{12}{13}$时,输出的k的值为(  )
A.11B.12C.13D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“x-1>0”是“x2-1>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数z=i(1+i),那么|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x∈R,“x>1“的一个充分条件是(  )
A.x>-1B.x≥0C.x≥1D.x>2

查看答案和解析>>

同步练习册答案