精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= cos4x+2sinxcosx﹣ sin4x.
(1)当x∈[0, ]时,求f(x)的最大值、最小值以及取得最值时的x值;
(2)设g(x)=3﹣2m+mcos(2x﹣ )(m>0),若对于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求实数m的取值范围.

【答案】
(1)解:

,f(x)max=2∴

综上所述: ,f(x)max=2;


(2)解:∵ ,∴ 即f(x1)∈[1,2],

,∴ ,∴

又∵m>0,∴

因为对于任意 ,都存在 ,使得f(x1)=g(x2)成立

∴m∈Φ


【解析】(1)利用两角和与差的三角函数化简函数的解析式,通过x的范围,结合正弦函数的有界性求解即可.(2)通过任意x1∈[0, ],存在x2∈[0, ],求出两个函数的值域,列出不等式组 ,求解m的范围即可.
【考点精析】认真审题,首先需要了解三角函数的最值(函数,当时,取得最小值为;当时,取得最大值为,则).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】春节是旅游消费旺季,某大型商场通过对春节前后20天的调查,得到部分日经济收入Q与这20天中的第x天(x∈N+)的部分数据如表:

天数x(天)

3

5

7

9

11

13

15

日经济收入Q(万元)

154

180

198

208

210

204

190


(1)根据表中数据,结合函数图象的性质,从下列函数模型中选取一个最恰当的函数模型描述Q与x的变化关系,只需说明理由,不用证明. ①Q=ax+b,②Q=﹣x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)结合表中的数据,根据你选择的函数模型,求出该函数的解析式,并确定日经济收入最高的是第几天;并求出这个最高值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.
(1)求证:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(I)若A,B两点的纵会标分别为 的值;
(II)已知点C是单位圆上的一点,且 的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数 的图象,只需将函数y=cos2x的图象(
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB∥平面DEG;
(2)求证:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F1、F2是双曲线 =1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左右两支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为(
A.4
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2是椭圆 + =1的左、右焦点,O为坐标原点,点P(﹣1, )在椭圆上,线段PF2与y轴的交点M满足 + =
(1)求椭圆的标准方程;
(2)⊙O是以F1F2为直径的圆,一直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B.当 =λ且满足 ≤λ≤ 时,求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf(x+T)对任意的x∈R成立,则称函数f(x)是Ω函数. (Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)
(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分
(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;
(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;
(Ⅲ)求证:当a>1时,函数f(x)=ax一定是Ω函数.

查看答案和解析>>

同步练习册答案