精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),以原点O为极点,x正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求直线l的普通方程和曲线C的直角坐标方程;

2)设P0-1),直线lC的交点为MN,线段MN的中点为Q,求.

【答案】(1);(2

【解析】

1)直线l的参数方程为t为参数).将代入消去参数t可得直线l的普通方程.利用极坐标与直角坐标的互化公式可得曲线C的直角坐标方程.

2)将代入得:,利用根与系数的关系及参数的意义可得

1)直线l的参数方程为t为参数).消去参数t可得直线l的普通方程为

,得,则有,即

则曲线C的直角坐标方程为

2)将l的参数方程代入,得,设两根为

MN对应的参数,且

所以,线段MN的中点为Q对应的参数为

所以,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为是椭圆短轴的一个顶点,并且是面积为的等腰直角三角形.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,过作与轴垂直的直线,已知点,问直线的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的切线,则的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数是定义在上的奇函数,当时,,则函数上的所有零点之和为(

A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,则平面PQC与平面DCQ的位置关系为(  )

A. 平行 B. 垂直

C. 相交但不垂直 D. 位置关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数满足,记的导函数为,当时恒有.,则m的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1x2+y2=1与圆C2x2+y26x+m=0

1)若圆C1与圆C2外切,求实数m的值;

2)在(1)的条件下,若直线x+2y+n=0与圆C2的相交弦长为2,求实数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产的产品的直径均位于区间内(单位: ).若生产一件产品的直径位于区间内该厂可获利分别为10302010(单位:元),现从该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.

1的值,并估计该厂生产一件产品的平均利润;

2现用分层抽样法从直径位于区间内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间内的槪率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中.

(1)当时,求函数的值域;

(2)若对任意,均有,求的取值范围;

(3)当时,设,若的最小值为,求实数的值.

查看答案和解析>>

同步练习册答案