【题目】已知函数().
(1)若函数有零点,求实数的取值范围;
(2)若对任意的,都有,求实数的取值范围.
【答案】(1);(2)
【解析】试题分析:(1)令f(x)=0,变形为,有两种解题思种,一是换元令,则,变形为关于的方程有正根,分,,讨论。二是分离参数,只需求右边的值域即可。(2)变形为,,恒成立。当,,即,。
试题解析:(1)由函数有零点得:关于的方程()有解
令,则
于是有,关于的方程有正根
设,则函数的图象恒过点且对称轴为
当时,的图象开口向下,故恰有一正数解
当时,,不合题意
当时,的图象开口向上,故有正数解的条件是
解得:
综上可知,实数的取值范围为.
(2)由“当时,都有”得:
,②
∵,故②变形为:
当时,不等式②简化为,此时实数
当时,有
∴
∴,
∵当时,,
当且仅当时取等号
∴
综上可知,实数的取值范围.
科目:高中数学 来源: 题型:
【题目】下列正确命题有__________.
①“”是“”的充分不必要条件
②如果命题“”为假命题,则中至多有一个为真命题
③设,若,则的最小值为
④函数在上存在,使,则a的取值范围或.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究某种微生物的生长规律,需要了解环境温度()对该微生物的活性指标的影响,某实验小组设计了一组实验,并得到如表的实验数据:
环境温度() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
活性指标 |
(Ⅰ)由表中数据判断关于的关系较符合还是,并求关于的回归方程(,取整数);
(Ⅱ)根据(Ⅰ)中的结果分析:若要求该种微生物的活性指标不能低于,则环境温度应不得高于多少?
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的两个焦点为, ,离心率为,点, 在椭圆上, 在线段上,且的周长等于.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过圆: 上任意一点作椭圆的两条切线和与圆交于点, ,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线, 是焦点,直线是经过点的任意直线.
(Ⅰ)若直线与抛物线交于、两点,且(是坐标原点, 是垂足),求动点的轨迹方程;
(Ⅱ)若、两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中平面,且,
.
(1)求证:;
(2)在线段上,是否存在一点,使得二面角的大小为45°,如果存在,求与平面所成角的正弦值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示, 是某海湾旅游区的一角,为营造更加优美的旅游环境,旅游区管委会决定建立面积为平分千米的三角形主题游戏乐园,并在区域建立水上餐厅.
已知, .
(1)设, ,用表示,并求的最小值;
(2)设(为锐角),当最小时,用表示区域的面积,并求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com