精英家教网 > 高中数学 > 题目详情

【题目】已知a∈R,当x>0时,f(x)=log2 +a).
(1)若函数f(x)过点(1,1),求此时函数f(x)的解析式;
(2)若函数g(x)=f(x)+2log2x只有一个零点,求实数a的范围;
(3)设a>0,若对任意实数t∈[ ,1],函数f(x)在[t,t+1]上的最大值与最小值的差不大于1,求实数a的取值范围.

【答案】
(1)解:∵a∈R,当x>0时,f(x)=log2 +a).

函数f(x)过点(1,1),

∴f(1)=log2(1+a)=1,解得a=1,

∴此时函数f(x)=log2 +1)(x>0).


(2)解:g(x)=f(x)+2log2x= +2log2x=log2(x+ax2),

∵函数g(x)=f(x)+2log2x只有一个零点,

∴g(x)=f(x)+2log2x=log2(x+ax2)=0

∴( +a)x2=1化为ax2+x﹣1=0

∴h(x)=ax2+x=1在(0,+∞)上只有一个解,

∴当a=0时,h(x)=x﹣1,只有一个零点,可得x=1;

当a≠0时,h(x)=ax2+x﹣1在(0,+∞)上只有一个零点,

当a>0时,成立;

当a<0时,令△=1+4a=0解得a=﹣ ,可得x=2.

综上可得,a≥0或a=﹣


(3)解:f(x)=

f′(x)=﹣

当x>0时,f′(x)<0,f(x)在[t,t+1]上的最大值与最小值分别是f(t)与f(t+1),

由题意,得f(t)﹣f(t+1)≤1,

≤2,

整理,得a≥

设Q(t)=

Q′(t)=

当t∈[ ,1]时,Q′(t)<0,

则a≥Q(t),∴a≥Q( ),解得a≥

∴实数a的取值范围是[ ,+∞).


【解析】(1)由f(1)=log2(1+a)=1,解得a=1,由此能求出此时函数f(x)的解析式.(2)g(x)=log2(x+ax2),由函数g(x)只有一个零点,从而h(x)=ax2+x=1在(0,+∞)上只有一个解,由此能求出a.(3)f(x)= ,由题意,得f(t)﹣f(t+1)≤1,从而a≥ ,设Q(t)= ,Q′(t)= ,由此利用导数性质能求出实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合{(x,y)|x∈[0,2],y∈[﹣1,1]}
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点M(﹣3,0)的直线l被圆x2+(y+2)2=25所截得的弦长为8,那么直线l的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,关于正方体ABCD﹣A1B1C1D1 , 下面结论错误的是(
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.该正方体的外接球和内接球的半径之比为2:1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是(
A.命题“若x≠2或y≠7,则x+y≠9”的逆命题为真命题
B.命题“若x2=4,则x=2”的否命题是“若x2=4,则x≠2”
C.命题“若x2<1,则﹣1<x<1”的逆否命题是“若x<﹣1或x>1,则x2>1”
D.若命题p:x∈R,x2﹣x+1>0,q:x0∈(0,+∞),sinx0>1,则(¬p)∨q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P为线段y=2x,x∈[2,4]上任意一点,点Q为圆C:(x﹣3)2+(y+2)2=1上一动点,则线段|PQ|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2﹣1=0},A∩B=B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|ax﹣x2|+2b(a,b∈R).
(1)当a=﹣2,b=﹣ 时,解方程f(2x)=0;
(2)当b=0时,若不等式f(x)≤2x在x∈[0,2]上恒成立,求实数a的取值范围;
(3)若a为常数,且函数f(x)在区间[0,2]上存在零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|+2x.
(1)若函数f(x)在R上是增函数,求实数a的取值范围;
(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;
(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

同步练习册答案