【题目】过点A(a,a)可作圆x2+y2﹣2ax+a2+2a﹣3=0的两条切线,则实数a的取值范围为( )
A.a<﹣3或a>1
B.a<
C.﹣3<a<1 或a>
D.a<﹣3或1<a<
【答案】D
【解析】解:把圆的方程化为标准方程得:(x﹣a)2+y2=3﹣2a, 可得圆心P坐标为(a,0),半径r= ,且3﹣2a>0,即a< ,
由题意可得点A在圆外,即|AP|= >r= ,
即有a2>3﹣2a,整理得:a2+2a﹣3>0,即(a+3)(a﹣1)>0,
解得:a<﹣3或a>1,又a< ,
可得a<﹣3或1<a< ,
故选:D.
【考点精析】通过灵活运用圆的一般方程,掌握圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显即可以解答此题.
科目:高中数学 来源: 题型:
【题目】设是空间两条直线, 是空间两个平面,则下列命题中不正确的是( )
A. 当时,“”是“”的充要条件
B. 当时,“”是“”的充分不必要条件
C. 当时,“”是“”的必要不充分条件
D. 当时,“”是“”的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知单调递增的等比数列满足,且是, 的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,求数列的通项公式;
(Ⅲ)在(Ⅱ)的条件下,设,问是否存在实数使得数列()是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B,P在单位圆上,且B(﹣ , ),∠AOB=α.
(1)求 的值;
(2)设∠AOP=θ( ≤θ≤ π), = + ,四边形OAQP的面积为S,f(θ)=( ﹣1)2+ S﹣1,求f(θ)的最值及此时θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若椭圆 + =1的焦点在x轴上,过点(1, )作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(1, )是离心率为 的椭圆E: + =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.
(1)求椭圆E的方程;
(2)试证明直线BC的斜率为定值,并求出这个定值;
(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(且, 为自然对数的底数).
(1)若曲线在点处的切线斜率为0,且有极小值,
求实数的取值范围.
(2)当 时,若不等式: 在区间内恒成立,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位: )频数分布表如表1、表2.
表1:男生身高频数分布表
表2:女生身高频数分布表
(1)求该校高一女生的人数;
(2)估计该校学生身高在的概率;
(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设表示身高在学生的人数,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com