精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的长轴长为4,焦距为

求椭圆的方程;

过动点的直线交轴与点,交于点 (在第一象限),且是线段的中点.过点轴的垂线交于另一点,延长于点.

设直线的斜率分别为,证明为定值;

求直线的斜率的最小值.

【答案】;()()见解析,()直线AB 的斜率的最小值为

【解析】试题分析:()分别计算a,b即得.

)()设,由M(0,m),可得的坐标,进而得到直线PM的斜率,直线QM的斜率,可得为定值.

)设.直线PA的方程为y=kx+m,直线QB的方程为y=–3kx+m.联立应用一元二次方程根与系数的关系得到,进而可得应用基本不等式即得.

试题解析:()设椭圆的半焦距为c.

由题意知

所以.

所以椭圆C的方程为.

)()设

M(0,m),可得

所以直线PM的斜率

直线QM的斜率.

此时.

所以为定值–3.

)设.

直线PA的方程为y=kx+m

直线QB的方程为y=–3kx+m.

联立

整理得.

,可得

所以.

同理.

所以

所以

,可知k>0

所以,等号当且仅当时取得.

此时,即,符号题意.

所以直线AB 的斜率的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,且公差,首项,且的等比中项.

(1)求数列的通项公式;

(2),求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABED中,AB//DE,ABBE,点C在AB上,且ABCD,AC=BC=CD=2,现将△ACD沿CD折起,使点A到达点P的位置,且PE.

(1)求证:平面PBC 平面DEBC;

(2)求三棱锥P-EBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是

(1)命题“”的否定是“”;

(2)l为直线,为两个不同的平面,若,则

(3)给定命题p,q,若“为真命题”,则是假命题;

(4)“”是“”的充分不必要条件.

A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A,B分别建有监测站,A与B之间的直线距离为100海里.

求海域ABCD的面积;

现海上P点处有一艘不明船只,在A点测得其距A点40海里,在B点测得其距B点海里判断这艘不明船只是否进入了海域ABCD?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为2的菱形,底面,且.

(1)证明:平面

(2)若直线与平面所成的角为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人造地球卫星绕地球运行遵循开普勒行星运动定律:如图,卫星在以地球的中心为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地心的连线)在相同的时间内扫过的面积相等设该椭圆的长轴长、焦距分别为.某同学根据所学知识,得到下列结论:

①卫星向径的取值范围是

②卫星向径的最小值与最大值的比值越大,椭圆轨道越扁

③卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间

④卫星运行速度在近地点时最小,在远地点时最大

其中正确的结论是(

A.①②B.①③C.②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】卵形线是常见曲线的一种,分笛卡尔卵形线和卡西尼卵形线,卡西尼卵形线是平面内与两个定点(叫焦点)的距离之积等于常数的点的轨迹.某同学类比椭圆与双曲线对卡西尼卵形线进行了相关性质的探究,设F1(﹣c0),F2c0)是平面内的两个定点,|PF1||PF2|a2a是常数).得出卡西尼卵形线的相关结论:①该曲线既是轴对称图形也是中心对称图形;②若ac,则曲线过原点;③若0ac,其轨迹为线段.其中正确命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的侧棱与底面垂直,M的中点,的中点,点上,且满足.

1)证明:.

2)当取何值时,直线与平面所成的角最大?并求该角最大值的正切值.

3)若平面与平面所成的二面角为,试确定P点的位置.

查看答案和解析>>

同步练习册答案