精英家教网 > 高中数学 > 题目详情
13.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f(x)的图象恰好通过n(n∈N+)个整点,则称函数f(x)为n阶整点函数,有下列函数:
①y=x3;②y=($\frac{1}{3}$)x;③y=$\frac{2-x}{x-1}$;④y=ln|x|,其中是二阶整点的函数的个数为(  )
A.1个B.2个C.3个D.4个

分析 首先,结合二阶整数点函数的概念,对所给的函数进行逐个验证即可.

解答 解:对于函数y=x3,当x∈Z时,一定有y=x3∈Z,即函数y=x3通过无数个整点,它不是二阶整点函数;
对于函数y=($\frac{1}{3}$)x;,当x=0,-1,-2,时,y都是整数,故函数y通过无数个整点,它不是二阶整点函数;
③y=$\frac{2-x}{x-1}$=-1+$\frac{1}{x-1}$,当x=0,2,时,y都是整数,它是二阶整点函数;
④y=ln|x|,当x=-1,1时,y都是整数,
它是二阶整点函数;
故只有③④是二阶整数点函数,
故选B.

点评 本题重点考查了函数的基本性质、二阶整数点的概念及信息的理解与处理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.
(1)求侧棱BA1与平面ABC所成的角;
(2)已知点D满足$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,在直线AA1上的点P,满足DP∥平面AB1C,求二面角B-CP-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正三棱柱ABC-A1B1C1中,底面边长为2,异面直线A1B与B1C1所成角的大小为$arccos\frac{{\sqrt{5}}}{10}$.
(1)求侧棱AA1的长.
(2)求A1B与平面A1ACC1所成角的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正方体AC1中,P为平面A1B1C1D1上一动点,P到棱BB1的距离等于它到平面AA1DD1的距离,则点P在平面A1B1C1D1上的轨迹可能是下面图象的哪一个?(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.点A∈α,B∉α,C∉α,则平面ABC与平面α的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,圆锥的底面圆心为O,直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,且AB=2PO=2$\sqrt{2}$.
(1)求证PO⊥AC;
(2)求二面角P-AC-E的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a、b、c,tanC=$\frac{sinA+sinB}{cosA+cosB}$.
(1)求角C的大小;
(2)若△ABC的外接圆直径为1,求△ABC面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:如图所示,一个圆锥的底面半径为30,高为40,在其中有一个高为20的内接圆柱.
(1)求圆柱的侧面积;
(2)求圆柱与圆锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设F为抛物线C:y2=-12x的焦点,过抛物线C外一点A作抛物线C的切线,切点为B.若∠AFB=90°,则点A的轨迹方程为x=3.

查看答案和解析>>

同步练习册答案