精英家教网 > 高中数学 > 题目详情
6.已知$\overrightarrow a$=(2,3),$\overrightarrow b$=(1,1)则$\overrightarrow a-\overrightarrow b$=(  )
A.(1,2)B.(3,4)C.(1,1)D.(-1,-2)

分析 直接利用坐标运算求解即可.

解答 解:$\overrightarrow a$=(2,3),$\overrightarrow b$=(1,1)则$\overrightarrow a-\overrightarrow b$=(1,2).
故选:A.

点评 本题考查向量的坐标运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.直线$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)被曲线x2-y2=1截得的弦长是4$\sqrt{2}$-2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(实验班做)某市规定中学生百米成绩达标标准为不超过16秒.现从该市中学生中按照男、女生比例随机抽取了50人,其中有30人达标.将此样本的频率估计为总体的概率.
如果男、女生采用相同的达标标准,男、女生达标情况如下表:
总计
达标a=24 b=630
不达标c=d=1220
总计3218n=50
(1)根据表中所给的数据,完成2×2列联表,并判断在犯错误的概率不超过0.01的前提下能否认为“体育达标与性别有关”?若有,你能否给出一个更合理的达标方案?
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0250.010.0050.001
k05.0246.6357.87910.828
(2)随机调查45名学生,设ξ为达标人数,求ξ的数学期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知y=f(x)=$\sqrt{1+x}$-$\sqrt{1-x}$的最大值为M,最小值为m,则$\frac{M}{m}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以下结论不正确的是(  )
A.根据2×2列联表中的数据计算得出K2≥6.635,而P(K2≥6.635)≈0.01,则有99%的把握认为两个分类变量有关系
B.在线性回归分析中,相关系数为r,|r|越接近于1,相关程度越大;|r|越小,相关程度越小
C.在回归分析中,相关指数R2越大,说明残差平方和越小,回归效果越好
D.在回归直线y=0.5x-85中,变量x=200时,变量y的值一定是15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设等差数列{an}的前n项的和为Sn,已知a13>0,a14<0,a13>|a14|,若SkSk+1<0,则k=26.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x∈R,y∈R,那么不等式组$\left\{\begin{array}{l}y≤2x\\ y≥-2x\\ x≤3\end{array}\right.$表示的平面区域的面积是18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知奇函数f(x)是[0,2]上的减函数,若f(2a+1)+f(4a-3)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简:
(1)(a${\;}^{\frac{1}{2}}$+a${\;}^{\frac{1}{2}}$)(a${\;}^{\frac{1}{2}}$-a${\;}^{\frac{1}{2}}$)
(2)$\frac{a({a}^{\frac{1}{2}}+{b}^{\frac{1}{2}})({a}^{\frac{1}{2}}-{b}^{\frac{1}{2}})}{{a}^{\frac{1}{3}}({a}^{\frac{1}{3}}+{b}^{\frac{1}{3}})+{b}^{\frac{2}{3}}}$(a>0,b>0)

查看答案和解析>>

同步练习册答案