精英家教网 > 高中数学 > 题目详情

【题目】设直线y=kx+1与圆x2+y2+2x﹣my=0相交于A,B两点,若点A,B关于直线l:x+y=0对称,则|AB|=

【答案】
【解析】解:由题意可知,直线y=﹣x过圆心,且与直线y=kx+1垂直,

∴k=1,

圆x2+y2+2x﹣my=0的圆心坐标(﹣1, )在直线x+y=0上,

∴﹣1 ,解得m=2,圆心坐标(﹣1,1),

x2+y2+2x﹣2y=0的半径r=

圆心到直线y=x+1的距离为

因而弦长是

所以答案是:

【考点精析】解答此题的关键在于理解直线与圆的三种位置关系的相关知识,掌握直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , Sn=(2n﹣1)an , 且a1=1.
(1)求数列{an}的通项公式;
(2)若bn=nan , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与抛物线的交点为Q,且

(1)求抛物线的方程;
(2)如图所示,过F的直线l与抛物线相交于A,D两点,与圆x2+(y﹣1)2=1相交于B,C两点(A,B两点相邻),过A,D两点分别作我校的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的结果是8,则判断框内m的取值范围是(
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图.设椭圆C: (a>b>0)的离心率e= ,椭圆C上一点M到左、右两个焦点F1、F2的距离之和是4.
(1)求椭圆C的方程;
(2)直线l:x=1与椭圆C交于P、Q两点,P点位于第一象限,A、B是椭圆上位于直线l两侧的动点,若直线AB的斜率为 ,求四边形APBQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P在圆C:x2+y2=4上,而Q为P在x轴上的投影,且点N满足 ,设动点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)若A,B是曲线E上两点,且|AB|=2,O为坐标原点,求△AOB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ax+ 在( ,+∞)上是增函数,则a的取值范围是(
A.[﹣1,0]
B.[﹣1,+∞)
C.[0,3]
D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,现将输出(x,y)值依次记为:(x1 , y1),(x2 , y2),…,(xn , yn),…,若程序运行中输出一个数组是(x,﹣10),则数组中的x=(
A.16
B.32
C.64
D.128

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,不等式 + 成立;在四边形ABCD中,不等式 + + + 成立成立;在五边形ABCDE中,不等式 + + + + 成立…,依此类推,在n边形A1A2…An中,不等式不等式 成立.

查看答案和解析>>

同步练习册答案